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1 Introduction

Herd behavior among investors is often viewed as a significant threat for the functioning

of financial markets. The distorting effects of herding on financial markets range from

informational inefficiency to increased stock price volatility, or even bubbles and crashes.

While the herding phenomenon has been explored extensively in the literature, theory

and evidence on herding are typically only loosely connected. The theoretical herding

literature has greatly contributed to the understanding under which conditions herding

may occur on an individual investor level for single stocks in a tick-by-tick trading

context. Herding models, however, have not been exploited to provide insights on how

such individual herding relates to herding intensity of an investor group aggregated

across a set of heterogeneous stocks and over time. Due to data limitations, on the

other hand, empirical researchers typically cannot assess herding in an investor-specific

and high-frequency trading context. Instead they have to rely on estimates of aggregate

herding intensity. As a consequence, the interpretation of estimation results is intuitive

but typically not closely related to a particular herd model.1 This paper contributes

towards closing this gap from both a theoretical and an empirical perspective. To

that end, we first simulate the herd model of Park and Sabourian (2011) for a broad

range of parameters to derive testable, theory-based hypotheses on aggregate herding

intensity. In a second step, these hypotheses are tested using a unique high-frequency,

investor-specific data set.

The theoretical literature on the causes and consequences of herd behavior was initiated

by the seminal work of Bikhchandani et al. (1992) and Banerjee (1992).2 Their concepts

1For example, several empirical studies investigating the size effect of herding are based on the

plausible but unproven hypothesis that herding intensity should be the larger the smaller the quantity

and quality of available information, see e.g. Lakonishok et al. (1992), Wermers (1999), and Sias (2004).

In the same vein, herding intensity is linked to the stage of the development of the financial market,

see e.g. Walter and Weber (2006)
2For comprehensive surveys of the herding literature, see e.g. Chamley (2004), Hirshleifer and

Hong Teoh (2003) and Vives (2008).
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were put into a financial market context by Avery and Zemsky (1998), where herding

is defined as a switch in traders’ opinion into the direction of the crowd, see also

Brunnermeier (2001).3 However, as Chamley (2004) already emphasized, herd behavior

arises rather infrequently in the Avery and Zemsky (1998) model. Building on Avery

and Zemsky (1998), Park and Sabourian (2011) derive precise conditions under which

herd behavior may occur and show that herding is in fact a relevant phenomenon in

modern financial markets. Yet, both models are not designed to provide analytical

results for aggregate herding intensity as they study herding on an individual investor

level in a tick-by-tick trading context.4

The empirical literature on herding was greatly influenced by Lakonishok et al. (1992)

and Sias (2004). In Lakonishok et al. (1992), herding of a group of investors is measured

as a tendency to accumulate on one side of the market. Specifically, they test whether

the share of net buyers in individual stocks significantly deviates from the average share

of net buyers across all stocks. Sias (2004) proposes a more dynamic approach to test

for herding. He investigates whether the accumulation of investors on one side of the

market persists over time by measuring the cross-sectional correlation of the share of

net buyers over two adjacent time periods. In contrast to the theoretical literature,

both empirical herding measures examine herding intensity on an aggregate level with

respect to investors, stocks and time.5

3A switch in trading behavior may result from traders inferring information from their predecessors’

actions. Note, that throughout this paper we focus on such information-based herding, which is the

herding motive most frequently studied in the theoretical literature. Other motives for herding such as

reputational concerns are not in the scope of this paper.
4Other financial market herding models also do not provide results on aggregate herding intensity,

see Lee (1998), Chari and Kehoe (2004), Décamps and Lovo (2006), Cipriani and Guarino (2008)

and Dasgupta and Prat (2008). They investigate how individual herding is related to transaction

costs, endogenous timing of trading decisions, differences in risk aversion, informational spillovers and

reputational concerns of money managers, respectively.
5An alternative approach in the empirical literature identifies herd behavior by analyzing the clus-

tering of individual stock returns around a market consensus, see Chang et al. (2000) and Chiang and

Zheng (2010). While this empirical approach does not require investor specific data, it is not directly

connected to market microstructure based herding theory.
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From a theoretical perspective, we contribute to close this gap in the herding literature

by deriving predictions for aggregate herding intensity from numerical simulations of

the Park and Sabourian (2011) herd model. We focus on the impact of market stress and

information risk on aggregate herding intensity because both concepts can be translated

conveniently into the herding model and are of significant economic relevance. While

herd behavior certainly has the potential to create times of market stress, it is less clear

whether the reverse relationship holds, thereby creating vicious cycles of economic

downturns and high volatility regimes.6 Information risk, defined as the probability of

trading with a counterpart who holds private information about the asset (see Easley

et al. (1996)), reflects the degree of asymmetric information in herd models. Information

risk is thus a key determinant for herd behavior. By simulating the model for a broad

range of parameters generating about 2.6 billion trades to analyze, we obtain two

testable hypotheses regarding the impact of information risk and market stress on

aggregate herding intensity: First, an increase in information risk should result in an

increase of both, buy and sell herding intensity. And second, increased market stress

should have an asymmetric effect on herding intensity: it should imply a decrease in

buy herding intensity but an increase in sell herding intensity. To the best of our

knowledge, these findings are the first theory-founded comparative static results for

herding intensity in a stock market.

From an empirical perspective, we contribute to the literature by testing model-based

hypotheses using an intra-day, investor-specific data set provided by the German Fed-

eral Financial Supervisory Authority (BaFin). The data include all real-time trans-

actions in the major German stock index DAX 30 carried out by banks and financial

services institutions.7 In line with herding theory, the use of intra-day data is par-

6While Chiang and Zheng (2010) and Christie and Huang (1995) confirm that herding increases

during times of market stress, Kremer and Nautz (2013a,b) find that herding in the German stock

market even slightly decreased during the recent financial crisis. Similar results are provided by Hwang

and Salmon (2004) for herding intensity during the Asian and the Russian crisis in the nineties.
7This data set has already been used by two companion papers. Kremer and Nautz (2013b) demon-

strate the importance of both data frequency and the possibility to identify traders for resulting herd-
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ticularly appropriate for measuring herd behavior. Private information in financial

markets is fast moving and the informational advantage from private signals can only

be exploited for short time horizons. Measuring herding at lower frequencies may bias

the results because new information might have reached the market in the meantime,

establishing a new context for investor behavior. The use of investor-specific data is

particularly important as we need to directly identify transactions by each trader in

order to determine whether an investor follows the observed actions of other traders

or her own trades. The empirical herding literature is often hampered by the avail-

ability of data having both characteristics. Typically, empirical studies have to rely on

either investor-specific but low-frequency data as, e.g., in Lakonishok et al. (1992), Sias

(2004), and Wermers (1999), or on high-frequency but anonymous transaction data,

compare Barber et al. (2009) or Zhou and Lai (2009).8

We employ the herding measure proposed by Sias (2004) as its dynamic approach is

particularly appropriate for the analysis of high-frequency data. The Sias measure also

captures the second feature of our data: having access to investor-specific information,

it allows differentiating between traders that indeed follow predecessors and traders that

simply follow themselves, for example, because they split their trades. Interestingly,

the Sias measure has not been applied to intra-day data before.

In accordance with our first theory-based hypothesis, our empirical results show that

herding intensity increases with information risk. In particular, the analysis of half-hour

trading intervals reveals a strong and significant co-movement of trading activity and

ing measures. They also confirm a destabilizing impact of herds on stock prices. Kremer and Nautz

(2013a) regress daily herding measures on e.g. size, volatility and other stock characteristics to analyze

the causes of herding. The current paper builds on these studies in two important aspects. First,

to the best of our knowledge, this paper is the first that analyzes intra-day herding intensity using

investor-specific data. Second, similar to the bulk of the empirical literature, the empirical analyses of

Kremer and Nautz (2013a,b) are only loosely connected to herding theory.
8Recently, Cipriani and Guarino (2013) proposed a new method to assess herding using anonymous

transaction data. Their method yields structural estimates of a herding model which is in the spirit of

Avery and Zemsky (1998).
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the herding intensity of institutional traders. In contrast to our theory-based hypothesis

on the effect of market stress on herding intensity, however, our results do not suggest

an asymmetric impact of market stress on herding intensity. In fact, we find that both,

sell as well as buy herding slightly increased in the German stock market during the

financial crisis. These results suggest that herding observed empirically during the

financial crisis may only be unintentional or spurious.

The remainder of the paper is structured as follows: In Section 2 we review the model

of Park and Sabourian (2011), which is the theoretical basis of our further analysis. We

discuss how to define and measure herding intensity in the model and its simulation

and explain how information risk and the degree of market stress are reflected in the

model. Section 3 introduces the simulation setup and derives the hypotheses on the

role of information risk and market stress for herding intensity. Section 4 introduces

the empirical herding measure. Section 5 presents the data and shows the empirical

results. Section 6 concludes.

2 Information risk and market stress in a herd model

2.1 The herd model

Park and Sabourian (2011) consider a sequential trading model à la Glosten and Mil-

grom (1985) consisting of a single asset, informed and noise traders, and a market

maker. The model assumes rational expectations and common knowledge of its struc-

ture.

The asset: There is a single risky asset with unknown fundamental value V ∈

{V1, V2, V3}, where V1 < V2 < V3. Its distribution is given by 0 < P (V = Vj) < 1

for j = 1, 2, 3 where
∑3

j=1 P (V = Vj) = 1. The asset is traded over t = 1, . . . , T

consecutive points in time. Thus, the trading period under consideration is [0, T ]. In

Section 3, we will choose T = 100 for simulating the model.
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The traders: Traders arrive one at a time in a random exogenous order in the market

and decide to buy, to sell, or not to trade one unit of the asset at the quoted bid and ask

prices. Traders are either informed traders or noise traders. The fraction of informed

traders is denoted by µ. Informed traders base their decision to buy, sell or not to

trade on their expectations regarding the asset’s true value. In addition to the publicly

available information consisting of the history of trades Ht, i.e. all trades observed

until period t, informed traders form their expectations according to a private signal

S ∈ {S1, S2, S3} on the fundamental value of the asset. They will buy (sell) one unit

of the asset if their expected value of the asset conditioned on their information set is

strictly greater (smaller) than the ask (bid) price. Otherwise, informed traders choose

not to trade. In the empirical herding literature, institutional investors are seen as a

typical example for informed traders. Noise traders trade randomly, i.e. they decide to

buy, sell or not to trade with equal probability of 1/3.

The private signal: The distribution of signals is conditioned on the true value of

the asset, i.e. P (S = Si | V = Vj) = pij with 0 ≤ pij ≤ 1 and
∑3

i=1 p
ij = 1 for all

i, j = 1, 2, 3. For each i, the shape of a private signal Si is given by pij , j = 1, 2, 3. In

particular, Park and Sabourian (2011) define a signal Si to be

• monotonically decreasing iff pi1 > pi2 > pi3,

• monotonically increasing iff pi1 < pi2 < pi3,

• u-shaped iff pi1 > pi2 and pi2 < pi3.

Park and Sabourian (2011) show that a necessary condition for herding is that there

exists a u-shaped signal. In accordance with Park and Sabourian (2011), we consider

the case where one signal is u-shaped and both, optimists and pessimists are present

in the market, i.e. one signal is monotone increasing (optimist) and another signal is

monotone decreasing (pessimist).
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The market maker: Trading takes place in interaction with a market maker who

quotes a bid and ask price. The market maker has access only to public information

and is subject to perfect competition such that he makes zero-expected profit. Thus,

he sets the ask (sell) price equal to his expected value of the asset given a buy (sell)

order and the public information. Formally, he sets askt = E[V |Ht ∪ {at = buy}] and

bidt = E[V |Ht ∪ {at = sell}], where at is the action of a trader in time t.

2.2 Herding intensity

Park and Sabourian (2011) describe herding as a “history-induced switch of opinion [of

a certain informed trader] in the direction of the crowd”. More precisely, in the model

context, herding is defined as follows:

Definition: Herding

Let bt (st) be the number of buys (sells) observed until period t at history Ht. A trader

with signal S buy herds in period t at history Ht if and only if

(i) E[V |S] ≤ ask1 (Informed trader with signal S does not buy initially),

(ii) E[V |S,Ht] > askt (Informed trader with signal S buys in t)

(iii) bt > st (The history of trades contains more buys than sells, i.e. the crowd buys)

Analogously, a trader with signal S sell herds in period t at history Ht if and only if

(i) E[V |S] ≥ bid1 (Informed trader with signal S does not sell initially),

(ii) E[V |S,Ht] < bidt (Informed trader with signal S sells in t)

(iii) bt < st (The history of trades contains more sells than buys, i.e. the crowd sells)

Note that this definition is less restrictive than the one used in Park and Sabourian

(2011). Above, herding refers to switches from not buying (not selling) to buying
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(selling), whereas Park and Sabourian (2011) define herding to be extreme switches

from selling to buying and vice versa. However, as they already noted, allowing herd

behavior to include switches from holding to selling or buying is a legitimate extension

which they do not consider only to be consistent with some of the earlier theoretical

work on herding. For our empirical application, including switches from holding to

selling or buying is more appropriate because such switches also contribute to stock

price movements.9

Notice further that item (iii) also differs slightly from the original definition of Park and

Sabourian (2011). There, (iii) reads E[V |Ht] > E[V ] for buy herding (and analogously

for sell herding) and is based on the idea that prices rise (fall) when there are more

(less) buys than sells. However, for an empirical analysis it is more convenient to base

the definition of herding more closely to the term “following the crowd”: While we can

observe the number of buys and sells, the market’s expectation of the asset’s true value,

E[V |Ht], can at best be approximated.10

By definition, only informed traders can herd. Therefore, herding intensity is defined as

the number of trades where traders engaged in herd behavior as a fraction of the total

number of informed trades.11 Specifically, for each trading period [0, T ], sell herding

intensity (SHI) in the model is measured as

Sell herding intensity =
#herding sells

#informed trades

and the definition for buy herding intensity (BHI) follows analogously.

9Note that it would also be possible to include switches from selling or buying to holding. However,

we are mainly interested in herd behavior which potentially contributes to stock price volatility. Any

switch to holding cannot amplify stock price movements or cause the stock price to move into the wrong

direction. The only empirical effect would be a reduction in trading volume. By model assumption,

however, liquidity is steadily provided by noise traders.
10One possible strategy to estimate E[V |Ht] would be to take the mid-quote, i.e. (askt + bidt)/2.
11In order to remain close to our empirical application we consider only trades from informed types

and exclude holds, since we investigate institutional trading and our data does not cover holds.
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2.3 Information risk and market stress in the model

Easley et al. (1996) introduce information risk as the probability that an observed

trade was executed by an informed trader. Thus, information risk coincides with the

parameter µ, the fraction of informed traders, in the model of Park and Sabourian

(2011). Therefore, we derive our theoretical prediction for the effect of information risk

on herding intensity by conducting comparative static analysis for herding intensity

with respect to changes in µ.

Times of market stress are typically understood as times of deteriorated economic

outlook and increased risk, when markets become more pessimistic and more uncertain.

In the model of Park and Sabourian (2011), these changes in the distribution of the

fundamental value of the asset are reflected in lower E[V ] and higher Var(V ). Both

effects can be summarized using the coefficient of variation, V C(V ) :=
√

Var(V )/E[V ],

as a measure of market stress. The higher V C(V ), the higher the degree of market

stress.

3 Simulating the herd model for a heterogenous stock

market

Empirical studies on herd behavior typically derive results for herding intensity as an

average for a large set of stocks. These stocks are likely to differ in their characteristics,

which in terms of the herding model means that each stock is described by a distinct

parameterization for the fraction of informed traders, the prior distribution of the asset,

and the distribution of the private signals. Moreover, these characteristics cannot be

expected to be constant over time. In accordance with the empirical literature, we are

therefore particularly interested in the comparative statics of herding intensity as an

average over a broad range of parameterizations. Yet, the model of Park and Sabourian

(2011) is not designed to allow the derivation of a tractable closed form solution for the

average herding intensity expected for a broad range of model parameterizations. In
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fact, even for a single parameterization, comparative static results cannot be obtained

analytically, see the appendix. As a consequence, we derive comparative static results

on the role of information risk and market stress on average herding intensity by means

of numerical model simulations.

In empirical applications, it is difficult to decide whether a trader herds or not since

researchers have no access to private signals. In contrast, in the simulation of the model

we can determine for each trade whether herding actually occurred. As a result, for

each simulation, the exact degree of herding intensity can be calculated. The choice of

parameter values and the simulation setup is explained below.

3.1 Simulation setup

In our simulations, we assume that the fraction of informed traders, µ, is taken from

M = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, i.e. |M| = 9. Note that values {0.2, ..., 0.7}

correspond to the range of market shares of institutional investors observed for our

sample period, compare Kremer and Nautz (2013a).

The prior distribution for an asset, P (V ), is taken from the set

P = {P (V ) : P (Vj) ∈ {0.1, 0.2, . . . , 0.8} for j = 1, 2, 3 and
3∑
j=1

P (Vj) = 1}.

Thereby, we consider only situations where the risky asset V takes each value V1, V2, V3

with positive probability. This parametrization produces |P| = 36 different asset dis-

tributions.

The conditional signal distribution, P (S|V ) is chosen from

C̃ = {P (S|V ) : pij ∈ {0.1, 0.2, . . . , 0.8} for i, j = 1, 2, 3}

where we consider only those signal structures C ⊂ C̃ which imply more optimists in

“good times”, i.e. p13 < p23 < p33, and more pessimists in “bad times”, i.e. p11 > p21 >

p31. As a result, the simulation accounts for |C| = 41 different signal structures.
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Considering all possible combinations of the above parameters we obtain Ω := M×

P × C, where |Ω| = 9 × 36 × 41 = 13284. Each element ω = (µ, P (V ), P (S|V )) ∈ Ω

represents a specific stock. Each stock is traded over T = 100 points of time. For each

model parameterization, the simulation is repeated 2000 times which produces more

than 2.6 billion simulated trades to analyze.

The results of these model simulations are used to derive predictions on the effect of

changes in information risk on average herding intensity as follows: In a first step, we

fix µ ∈M and calculate average herding intensity as the average across all parameter-

izations in {µ} × P × C. In a second step, we evaluate how average herding intensity

varies with µ. Accordingly, to analyze the effect of market stress on average herding

intensity, we fix P (V ) ∈ P and calculate average herding intensity across all parame-

terizations inM×{P (V )}×C. Next, we evaluate how average herding intensity varies

with the distribution of the asset, P (V ), where the degree of market stress implied by

P (V ) is given by its coefficient of variation, V C(V ).

3.2 Simulation results

Figure 1 shows boxplots for average herding intensity for sell and buy herding, respec-

tively, over 2000 simulations for parameterizations of the model that differ only in the

fraction of informed traders. The simulation results clearly indicate that both, average

buy and sell herding intensity increase in the fraction of informed traders in a symmet-

ric way. Intuitively, private information may be easier dominated by the information

contained in the history of trades as each preceding trade is more likely to be carried

out by an informed type. The simulation results further suggest a weaker increase in

herding intensity as well as an increase in the variance of herding intensity when µ

approaches one. This could be explained by the increased bid-ask spread induced by

an increase in the fraction of informed traders, making a switch from not buying (not

selling) to buying (selling) less likely. Note that for our empirically relevant range of

µ ∈ [0.2, 0.7] the increase in herding intensity is steep and each set of parameterizations

11



Figure 1: Information risk and herding intensity

(a) Sell Herding (b) Buy Herding

Notes: Sell and buy herding intensity, respectively, are plotted against the fraction of informed traders.

The boxplots show the variation across 2000 simulations of herding intensity for parameterization

{µ}×P ×C, where the fraction of informed traders, µ, is plotted along the horizontal. On the ordinate

we plot herding intensity as a fraction of informed traders that engaged in herd behavior. The central

mark of each box is the median, the edges of the boxes are the 25th and 75th percentiles, the whiskers

are the most extreme data points.

exhibits only small variations across the 2000 simulations.

The fraction of informed traders determines the probability for the market maker to

encounter an informed trader and, thus, the information risk in the market. Therefore,

the simulation results shown in Figure 1 can be summarized as follows:

Hypothesis 1 (Information Risk and Herding Intensity). Average sell and buy herding

intensity increase in information risk.

Figure 2 shows sell and buy herding intensity for parameterizations that differ only in

the degree of market stress as it is reflected by the variation coefficient,
√

Var(V )/E[V ],

of the fundamental value.12 The higher the variation coefficient, the more severe the

12Unlike in Figure 1 we plot the average herding intensity across 2000 simulations instead of boxplots,

for the sake of readability. The variation of herding intensity across 2000 simulation is, however,

comparable to the variations in Figure 1.
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Figure 2: Market stress and herding intensity

Sell Herding Buy Herding

Notes: Sell and buy herding intensity, respectively, are plotted against the variation coefficient. Each

dot shows the herding intensity averaged across 2000 simulations for parameterizationM×{P (V )}×C,

where the variation coefficient, V C(V ), induced by the asset’s distribution, P (V ), is plotted along the

horizontal. On the ordinate we plot herding intensity as a fraction of informed traders that engaged in

herd behavior across 2000 simulations.

market stress. In contrast to information risk, the impact of market stress on herding

is highly asymmetrical. For sell herding intensity, the simulation results demonstrate

a strong positive relationship of average herding intensity and the variation coefficient.

Therefore, the higher the degree of market stress, the higher the average sell herding

intensity to be expected in a heterogenous stock market. For buy herding intensity,

however, the higher the variation coefficient, the smaller the average herding intensity,

although the relationship is clearly less pronounced. To explain this asymmetry, con-

sider an increase of the variation coefficient that is mainly driven by a decrease of the

expected value of the asset E[V ]. In this case, a greater variation coefficient should

clearly increase sell herding while buy herding should be expected to occur less fre-

quently.13 We summarize our simulation results obtained for the relationship between

our proxy for market stress and average herding intensity as follows:

13In fact, simulation results for buy herding were similar to those obtained for sell herding, if we

plotted average buy herding intensity against
√

Var(V )E[V ].
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Hypothesis 2 (Herding Intensity and Market Stress). Average buy herding intensity

decreases with market stress, whereas sell herding intensity increases.

4 Empirical herding measure

The dynamic herding measure proposed by Sias (2004) is designed to explore whether

(institutional) investors follow each others’ trades by examining the correlation between

the traders’ buying tendency over time. The Sias herding measure is, therefore, par-

ticularly appropriate for high-frequency data. Similar to the static herding measure

proposed by Lakonishok et al. (1992), the starting point of the Sias measure is the

number of buyers as a fraction of all traders. Specifically, consider a number of Nit

institutions trading in stock i at time t. Out of these Nit institutions, a number of bit

institutions are net buyers of stock i at time t. The buyer ratio brit is then defined as

brit = bit
Nit

. According to Sias (2004), the ratio is standardized to have zero mean and

unit variance:

∆it =
brit − b̄rt
σ(brit)

, (1)

where σ(brit) is the cross sectional standard deviation of buyer ratios across I stocks at

time t. The Sias herding measure is based on the correlation between the standardized

buyer ratios in consecutive periods:

∆it = βt∆i,t−1 + εit. (2)

The cross-sectional regression is estimated for each time t and then the Sias measure for

herding intensity is calculated as the time-series average of the estimated coefficients:

Sias =
∑T

t=2 βt

T−1 . It is worth emphasizing that this kind of averaging is very much in

line with the way we calculate average herding intensity in the model simulation.

The Sias methodology further differentiates between investors who follow the trades

of others (i.e., true herding according to Sias (2004)) and those who follow their own

trades. For this purpose, the correlation is decomposed into two components:
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βt = ρ(∆it,∆i,t−1) =
[

1
(I − 1)σ(brit)σ(bri,t−1)

] I∑
i=1

[
Nit∑
n=1

(Dnit − b̄rt)(Dni,t−1 − b̄rt−1)
NitNi,t−1

]

+
[

1
(I − 1)σ(brit)σ(bri,t−1)

] I∑
i=1

Nit∑
n=1

Ni,t−1∑
m=1,m 6=n

(Dnit − b̄rt)(Dmi,t−1 − b̄rt−1)
NitNi,t−1

 , (3)

where I is the number of stocks traded. Dnit is a dummy variable that equals one

if institution n is a buyer in i at time t and zero otherwise. Dmi,t−1 is a dummy

variable that equals one if trader m (who is different from trader n) is a buyer at time

t − 1. Therefore, the first part of the measure represents the component of the cross-

sectional inter-temporal correlation that results from institutions following their own

strategies when buying or selling the same stocks over adjacent time intervals. The

second part indicates the portion of correlation resulting from institutions following

the trades of others over adjacent time intervals. According to Sias (2004), a positive

correlation that results from institutions following other institutions, i.e., the latter part

of the decomposed correlation, can be regarded as evidence for herd behavior. In the

subsequent empirical analysis, we shall therefore focus on the latter term of equation

(3) which we denote by Sias. According to Choi and Sias (2009), Equation (3) can

be further decomposed to distinguish between the correlations associated with “buy

herding” (bri,t−1 > 0.5) and “sell herding” (bri,t−1 < 0.5).

5 Information risk, market stress and herding intensity:

Empirical results

5.1 Data

The data are provided by the German Federal Financial Supervisory Authority (BaFin),

see also Kremer and Nautz (2013a,b). Under Section 9 of the German Securities Trading

Act, all credit institutions and financial services institutions are required to report to
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BaFin any transaction in securities or derivatives which are admitted to trading on

an organized market. These records make it possible to identify all relevant trade

characteristics, including the trader (the institution), the particular stock, time, number

of traded shares, price, and the volume of the transaction. Moreover, the records

specify on whose behalf the trade was executed, i.e., whether the institution traded for

its own account or on behalf of a client that is not a financial institution. Since this

study is concerned with institutional trades, particularly those of financial institutions,

we focus on the trading of own accounts, i.e., those cases when a bank or a financial

services institution is clearly the originator of the trade. We exclude institutions trading

exclusively for the purpose of market making. We also exclude institutions that are

formally mandated as designated sponsors, i.e., liquidity providers, for a specific stock.14

Following the herding literature, we are particularly interested in the herding behavior

of institutional investors because they are more likely to be informed compared to e.g.

retail investors. Moreover, institutional investors are the predominant class in the stock

market with the power to move the market and impact prices, particularly if they herd.

The analysis focuses on shares listed on the DAX 30 (the index of the 30 largest and

most liquid stocks), where stocks are selected according to the index compositions at the

end of the observation period on March 31, 2009. Following the empirical literature, we

require that at least five institutions were active in the market at each day. Using data

from July 2006 to March 2009 (698 trading days), we are able to investigate whether

trading behavior has changed during the financial crisis. Over the sample period, there

are 1120 institutions performing proprietary transactions. Among those 1120 traders,

1044 trade on the DAX 30 stocks.

14For each stock, there are usually about two institutions formally mandated as market maker. The

institutions are not completely dropped from the sample (unless they have already been dropped due to

purely engaging in market maker business), but only for those stocks for which they act as designated

sponsors. The designated sponsors for each stock are published at http://www.deutsche-boerse.com.
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5.2 Information risk and herding intensity

The more informed traders are active in a market, the higher the probability of informed

trading and, thus, information risk. According to Hypothesis 1, average herding in-

tensity increases with information risk reflected in the parameter µ, the fraction of

informed traders. In the following, we use two empirical proxies for the level of in-

formation risk: i) the number of active institutional traders and ii) the share of the

institutional trading volume.

According to e.g. Foster and Viswanathan (1993) and Tannous et al. (2013), the fraction

of informed traders and, thus, information risk cannot be expected to be constant

over a trading day. In order to account for intra-day trading patterns in the German

stock market, we divide each trading day into 17 half-hour intervals. A trading day is

defined as the opening hours of the trading platform Xetra (9 a.m. to 5:30 p.m.), on

which the bulk of trades occur. The use of half-hour intervals ensures that the number

of active institutions is sufficiently high for calculating intra-day herding measures.15

The first two columns of Table 1 show how both empirical proxies for information risk

are distributed within a day. Apparently, institutional traders are more active at the

opening and closing intervals, irrespective of the measure of trading activity.

In order to investigate the intra-day pattern of herding intensity, we calculate the

Sias herding measure for each half-hour time interval separately. The results of this

exercise are also shown in Table 1. The third column shows for each interval the overall

Sias measure (Sias) which is based on the average correlation of buy ratios between

two intervals, see Equation (2) in Section 4. Following Sias (2004), this correlation

may overstate the true herding intensity because it does not account for correlation

which results from traders who follow themselves. It is a distinguishing feature of our

investor-specific data that it allows to address that problem even on an intra-day basis.

In particular, column four reports the correlation due to investors following the trades

15For sake of robustness, we also divided the trading day into 9 one-hour intervals but our main

results do not depend on this choice. For brevity, results are not shown but are available on request.
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Table 1: Information risk and herding intensity within a trading day

Information risk Herding intensity

Time Traders Trading V olume Sias Sias

09:00 - 09:30 25.33 6.73 − −

09:30 - 10:00 21.05 5.34 25.92
(0.23)

9.92
(0.26)

10:00 - 10:30 15.75 2.57 28.59
(0.22)

7.54
(0.24)

10:30 - 11:00 22.88 6.73 30.43
(0.29)

7.85
(0.23)

11:00 - 11:30 19.58 4.51 34.30
(0.31)

9.98
(0.22)

11:30 - 12:00 18.72 4.15 33.98
(0.29)

8.24
(0.23)

12:00 - 12:30 17.96 3.77 33.91
(0.30)

7.83
(0.24)

12:30 - 01:00 17.08 3.39 33.81
(0.25)

6.96
(0.21)

01:00 - 01:30 17.36 4.31 33.28
(0.24)

7.84
(0.21)

01:30 - 02:00 16.57 3.28 34.00
(0.28)

8.56
(0.21)

02:00 - 02:30 17.85 3.96 34.74
(0.25)

8.60
(0.26)

02:30 - 03:00 18.90 4.63 33.38
(0.24)

8.29
(0.26)

03:00 - 03:30 18.32 4.42 34.21
(0.26)

9.31
(0.26)

03:30 - 04:00 20.42 6.43 34.19
(0.28)

10.60
(0.26)

04:00 - 04:30 20.70 6.98 35.65
(0.28)

12.86
(0.26)

04:30 - 05:00 20.74 7.64 34.62
(0.27)

11.90
(0.26)

05:00 - 05:30 22.50 10.13 32.94
(0.28)

12.53
(0.26)

Notes: The table shows how information risk and herding intensity evolves over the trading day. On the

predominant German platform Xetra R©, trading takes place from 9 a.m. till 5.30 p.m. CET. Traders

denotes the average number of active institutional traders, Trading V olume refers to the average

percentage share of the daily trading volume of institutional investors. For instance, on average, 6.73%

of the daily institutional trading volume appeared from 9 a.m. to 9:30 a.m. in the sample period.

Sias and Sias represent the overall and the decomposed Sias herding measure, where the latter only

considers institutions that follow the trades of others, see Equation (3). Standard errors are given in

parentheses. 18



of others (Sias), see Equation (3).

Table 1 offers several insights concerning the intra-day pattern of institutional herding.

First of all, both Sias measures provide strong evidence for the presence of herding

for each half-hour interval of the trading day. Second, intra-day herding measures are

significantly larger than those obtained for data with lower-frequency, compare Kremer

and Nautz (2013a,b). Third, the sizable differences between Sias and Sias highlights

the importance of using investor-specific data.

How is the observed intra-day variation of information risk related to the intra-day

herding intensity of institutional investors? The Sias herding measure depends on the

trading behavior of two subsequent time periods. Therefore, for each time interval

herding intensity is compared with the average information risk of the corresponding

time intervals.16 Figure 3 reveals a strong intra-day co-movement between both proxies

of information risk and Sias. In fact, we find overwhelming evidence in favor of Hy-

pothesis 1: the null-hypothesis of zero correlation between information risk and herding

intensity can be rejected irrespective of the underlying proxy of information risk. For

example, the rank-correlation coefficient between the average trading volume and the

corresponding Sias measure is 0.80, which is significantly above zero at the 1% level.17

Note that the peaks in Sias at market opening and following the opening of the US

market at 3:30 p.m. – 4 p.m. correspond with high activity of informed traders suggest-

ing that at market openings there is a lot of information contained in observed trades

16Note that this is line with the intuition from the herd model of Park and Sabourian (2011). On

the one hand, high information risk in t− 1 leads institutional investors to believe that there is a high

degree of information contained in previously observed trades. On the other hand, high information

risk in t ensures that there is a high number of potential herders active in the market. Both effects

contribute positively to herding intensity in period t.
17More precisely, the associated p-value of the rank-test is 0.0003. Pearson’s correlation coefficient

is 0.91 and significant at all conventional levels. Note that a rank correlation coefficient might be

more appropriate than Pearson’s correlation coefficient, since it accounts for the potentially non-linear

relation between information risk and herding intensity suggested by the numerical simulation of the

herd model, see Figure 1.
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Figure 3: Information Risk and Average Herding Intensity within a Trading Day

on which subsequent traders herd. This confirms the experimental findings of Park and

Sgroi (2012) who observe that traders with relatively strong signals trade first, while

potential herders delay.

5.3 Herding in times of market stress

According to Hypothesis 2, sell herding should increase in times of market stress when

uncertainty increases and markets become more pessimistic about the value of the

asset. In contrast, buy herding intensity should decline in a crisis. In our application,

a natural candidate to test this hypothesis is the outbreak of the financial crisis. In

order to investigate the effect of the crisis on herding intensity, we calculate sell and

buy herding measures for the crisis and the pre-crisis period separately. The pre-crisis
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Table 2: Herding intensity - before and during the financial crisis

Buy Herding Sias Sias

Pre-crisis period 14.37
(0.37)

4.10
(0.10)

Crisis period 13.87
(0.35)

5.09
(0.11)

Sell Herding

Pre-crisis period 18.87
(0.23)

5.41
(0.09)

Crisis period 15.65
(0.25)

5.74
(0.08)

Notes: This table reports adjusted (Sias) and unadjusted (Sias) herding measures based
on half-hour intervals estimated separately for the pre-crisis and the crisis period. The
Sias measures are further decomposed into its buy and sell herding components, compare
Section 4. Standard errors are given in parentheses.

period ends on August 9, 2007 as this is widely considered as the starting date of the

financial crisis in Europe, see e.g. European Central Bank (2007) and Abbassi and

Linzert (2012).

Herding measures obtained before and during the crisis are displayed in Table 2. The

results are hardly compatible with the predictions of the simulated model. At first

sight, the statistically significant yet small increase in sell herding (5.74 > 5.41) is in

line with theoretical expectations. However, buy herding intensity has definitely not

decreased in the crisis period. In fact, buy herding has even increased (5.09 > 4.10).

How can this contradicting evidence be explained? Probably, the effects claimed by

Hypothesis 2 hold but are overshadowed by counteracting factors. For example, Kremer

and Nautz (2013b) show that the market share of institutional investors has dropped
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sharply since the outbreak of the financial crisis. If this drop in trading activity of

financial institutions can be interpreted as a decline in information risk, then a crisis-

driven increase in sell herding could be ameliorated by a decrease of sell herding due to

lower information risk. However, in this case, a potential drop in information risk makes

the observed increase in buy herding even more puzzling. Another explanation could

be that the deterioration in the economic outlook induced by the financial crisis was

relatively small compared to the increase in uncertainty. In this case, our simulation

exercise shows that both buy and sell herding intensity should increase where sell

herding should increase slightly stronger.18 Still, the evidence shows that buy herding

increased slightly more contradicting the simulation-based prediction.

Ederington and Goh (1998) and Jorion et al. (2005) argue that firms have an incentive

to withhold bad news from investors, but release good news voluntarily. Such incentives

may increase during times of market stress, as positive news help to separate the firm

from its poorly performing peers and, thereby, to shield it from negative spillover effects.

In the framework of Park and Sabourian (2011), a large share of informed traders might

translate those positive news into the same monotone increasing signal advising them to

buy. Since the resulting increase in buys stems from investors’ correlated signals rather

than from investors inferring information of the trades of others, the model predicts

higher buy ratios but not increased buy herding. As a result, the observed increase in

the buy herding measure during the financial crisis may be only spurious and unrelated

to the herding behavior considered in the theoretical herding literature.

6 Concluding remarks

Due to data limitations and the absence of testable, model-based predictions, the theo-

retical and the empirical herding literature are only loosely connected. This paper pro-

poses an approach that contributes towards closing this gap. To obtain theory-founded

results, we conduct numerical simulations of the financial market herding model of Park

18Results are not shown here, but are available upon request.
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and Sabourian (2011). These theory-based hypotheses are tested empirically applying

the herding measure of Sias (2004) to investor-specific and high-frequency trading data

from the German stock market DAX. In particular, this paper derives and tests hy-

potheses on how information risk and market stress affect herding intensity.

In accordance with our simulation results, we find that aggregate herding intensity

increases with information risk. The empirical evidence regarding the impact of market

stress on herding intensity, however, is only mixed. In particular, the estimated increase

in buy herding during the recent financial crisis is not consistent with the simulation-

based model prediction.

The results provided in this paper demonstrate that more research is needed to fur-

ther close the gap between theory and evidence. For example, during crises periods

correlation across assets and contagious effects may play a particular role in explaining

investors’ behavior. Herding models, however, are typically single asset models and are

not designed to provide insights about herd behavior in a context of correlated assets

and informational spillovers.19 To improve the interpretation of evidence based on ag-

gregate herding measures, an extension of herding models to a multiple asset setting

would be an interesting avenue for future research. Empirical herding measures, on the

other hand, assess correlated trade behavior (see, e.g., Lakonishok et al. (1992), Sias

(2004), Chang et al. (2000) or Patterson and Sharma (2010)) and are, thus, very good

in detecting situations where investors accumulate on one side of the market. They

can hardly reveal, however, to what extent this correlation is actually due to traders

neglecting their private information and following the actions of others. Therefore,

empirical herding measures cannot distinguish between true (or informationally ineffi-

cient) and spurious (or unintentional) herd behavior. In the case of spurious herding,

correlated trading is not necessarily a sign of inefficiency but could be due to a common

reaction to fundamentals or similar risk models, see Kremer and Nautz (2013a).

The current paper showed that the pattern of trading correlation and information risk

19Cipriani and Guarino (2008) make a first attempt to theoretically study contagion and information

cascades in a two asset model.
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can be related to true herding, which raises worries about market efficiency in times

of high information risk. By contrast, our results suggest that the increase in the

correlation of buys estimated for the crisis period is more convincingly explained by

unintentional herding.
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A Appendix

A.1 Analytical results on herding intensity

We will now present an analytical formula for theoretical sell herding intensity in the

context of the model of Park and Sabourian (2011). Investigating this formula more

closely, we will see that the relationship between herding intensity and probability of

informed trading (= µ) as well as market turbulence (=
√
V ar[V ]/E[V ]) is too complex

to develop comparative statics analytically.

It can be shown that the expected number of herding sells E[shT,M] is given by

E[shT,M] =
3∑
i=1

P (Vi)


T∑
j=1

j

(
µP (S2|Vi)

µ(P (S2|Vi) + P (S3|Vi)− 1
3) + 1

3

)j  T∑
k=j

P (S̄T,M = k|Vi)

(
µ(P (S3|Vi)− 1

3) + 1
3

µ(P (S2|Vi) + P (S3|Vi)− 1
3) + 1

3

)k−j ,

(4)

where M := {µ, P (V ), P (S|V )} be the parametrization of the model, shT,M denotes the

actual number of sell herds and S̄T,M is the number of sells that occur while S2 engages

in sell herding.20 The formula is mainly derived via application of Bayes’ rule and the

law of iterated expectations. To develop some intuition behind it, consider first only

the term
∑3

i=1 P (Vi) {·}. The factor {·} contains the estimated number of sell herds

given a realization of the risky asset V = Vi. The probability weighted sum, thus is

the expected number of sell herds over all possible states of the risky asset V . Now,

consider the terms within the curly brackets, i.e.
∑T

j=1 j
(

µP (S2|Vi)

µ(P (S3|Vi)− 1
3
)+ 1

3

)j
[·]. The

number j stands for the number of herding sells in some history Ht. The factor (·)j

stands for the probability that the u-shaped informed trader S2 arrives on the market

j times and each time decides to sell, given that history Ht contains k ≥ j sells under

which a herding sell can occur. The sum in brackets finally, describes the probability

that k− j sells stem from either noise traders or S3 for all k ≥ j and given that k sells

20The proof for this formula are provided on request.
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occur under which S2 would engage in sell herding.

The important thing to take away from this formula is that it is not feasible to con-

duct comparative statics of herding intensity analytically. First note that there is a

lot of complexity hidden in P (S̄T,M|Vi). This probability is impossible to compute an-

alytically since we would need to calculate the probabilities of all history paths HT .

Depending on the model parameterization, we would need to calculate the probabilities

of at least 6T history paths, where 6 amounts to the number of different possible states

of the model, we need to consider in each step. Moreover, the above formula only yields

results for the expected number of herding sells for a given model parameterization.

If wanted to generalize our assessment to arbitrary model parameterizations or the

average number of herding sells for different model parameterizations, the tractability

of expected herding sells would be reduced even further. Finally note, that (4) only

provides the value for the number of herding sells. SHI, however, is defined as the

number of herding sells divided by the number of informed trades. Consequently, the

expected sell herding intensity would be given by the expectation of that ratio. Since

the number of informed trades is also random variable that is not independent of the

number of herding sells, E[ # herding sells
# informed trades ] is even harder to compute.

But even if we were to agree that (4) is a good proxy to base our analytical discus-

sion upon, comparative statics of the expected number of herding sells with respect

to changes in µ and P (V ) would not be fruitful. For the latter simply note that the

complexity of the sum makes it impossible to isolate E[V ] or Var[V ] on the right hand

side of (4).21

21Regarding the probability of informed trading, it seems at first glance possible to differentiate the

right hand side of equation (4) with respect to µ. The sign of the derivative, however, will depend on

the signal structures for informed traders S2 and S3 as well as the distribution P (V ) of the risky asset

which will prevent us from establishing general analytical results.
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