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1 Introduction

Optimal allocation of goods among individuals is one of the core issues of economics. Normally re-
searchers address this issue using the well-established concepts of markets and auctions, in which
individuals receive goods in exchange for transfers. However, in a variety of real-life situations
these transfers are not available for either ethical, institutional or other reasons. Recent literature
analyzes numerous examples of such situations: from student assignment to primary schools [Ab-
dulkadiroğlu, Che and Yasuda (2011)] and job placement for graduates [Roth (1984), Coles et al.
(2010)], to housing markets [Chen and Sönmez (2002)], organ donation [Roth, Sönmez and Ünver
(2005)] and distributing military supplies [Kesten and Yazici (2012)].

Such circumstances have forced regulators to design new artificialmatching markets and develop
assignment mechanisms suitable for these markets. But no matter how diverse the matching
markets might be, all mechanisms are usually required to have the same three qualities: to be
strategy-proof, efficient, and fair. This paper studies the mutual compatibility of these three
properties and focuses on the notions of fairness and efficiency that are most relevant for the real-
life applications. It is also the first paper in the matching and random assignment literature to
provide the impossibility result with ex-post efficiency.

The paper considers the class of strategy-proof mechanisms. Strategy-proofness is a term for
incentive compatibility or robustness to manipulation. A mechanism is called strategy-proof if
agents always prefer to report their preferences truthfully rather than attempt to strategically
manipulate them. If, on the contrary, a mechanism is not strategy-proof, its outcome cannot be
reliably predicted and the resulting allocation will not necessarily have any of the other expected
properties. Therefore, strategy-proofness is usually considered to be a crucial property.

Perhaps the most straightforward and well-known strategy-proof mechanism is the serial dicta-
torship mechanism (SD). It works as follows: all agents choose their objects sequentially according
to some exogenous order. It is easy to see that this mechanism always results in an efficient alloca-
tion (in the Pareto sense). At the same time it is intuitively clear that SD is very unfair : the first
agent picks any object, the second gets at least her second best, while the last agent has no choice.
The natural “fair” extension of the SD mechanism is the dictatorship in which the underlying or-
der is chosen randomly. The resulting mechanism, random serial dictatorship (RSD), induces only
efficient outcomes, therefore it is ex-post efficient. Ex-post efficiency is a rather weak requirement.
It is also, perhaps, the most applicable efficiency property for real-life situations as it is relevant
for the final, deterministic outcomes. Because RSD is ex-post efficient and strategy-proof it has
become one of the most widely used mechanisms both directly and indirectly, as a component of
more complex mechanisms.

In the recent literature the central role of RSD among other mechanisms has been supported by
several equivalence results that connect RSD to versions of other mechanisms used in practice. For
example, Abdulkadiroğlu and Sönmez (1998) show that RSD is equivalent to the core from random
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endowments mechanism, that initially randomly allocates objects and then proceeds by using the
top trading cycles (TTC) algorithm in which agents voluntarily exchange the objects that they are
endowed with. Next, Kesten (2009) shows the equivalence with another TTC-based mechanism,
the top trading cycles from equal division. Finally, the celebrated deferred acceptance mechanism
introduced by Gale and Shapley (1962), which is often used for the two-sided matching problems
such as the school choice problem (as well as the college admission problem and job placement
problem), is also equivalent to RSD in case schools are initially indifferent between students and
the ties are broken randomly for all schools together.

Finally, the third trait a real-life mechanism is expected to possess apart from being strategy-
proof and ex-post efficient, is to be fair. In addition to purely normative reasons, satisfying some
form of fairness is important in order to prevent agents from contracting outside of the centralized
market, which can possibly damage the entire assignment.1 Since ex-post fairness is an extremely
restrictive property2 it is common to address fairness from the ex-ante perspective, which implies
not a fair distribution of objects but a fair distribution of the chances to get these objects. Ex-
ante fairness is therefore defined over the set of individual assignment probabilities, called random
assignments.

One of the ex-ante fairness notions most commonly used in the literature is envy-freeness. A
random assignment is envy-free if every agent prefers her own random assignment to anyone else’s.
Although this property should almost perfectly eliminate any fairness concerns, it also proves to
be too restrictive. For instance, the RSD mechanism introduced above is not envy-free if there are
three or more agents.

In this paper I show a general impossibility regarding envy-freeness: the set of envy-free,
strategy-proof, and ex-post efficient mechanisms is empty. This result is most relevant for deter-
ministic assignment mechanisms. Since ex-post efficiency is the minimal efficiency requirement for
these mechanisms (and it can only be expected to occur if strategy-proofness is satisfied as well),
this impossibility result implies a certain limit on the potentially reachable level of fairness. (Non-
envy-freeness limit is certainly not binding for I show a stronger impossibility result in the Lemma
1 below.) The main example of a strategy-proof ex-post efficient mechanism is the mechanism
based on the TTC algorithm that is used in school choice, organ donation, and housing problems
(for details see Abdulkadiroğlu and Sönmez (2003), Roth et al. (2004) and Abdulkadiroğlu and
Sönmez (2010) respectively). The theorem therefore shows that no mechanism that is based on the
TTC algorithm (so that it remains strategy-proof and ex-post efficient) can be envy-free, regardless
of the initial endowment structure and the randomization of these endowments.

The second part of the paper deals with a less strict fairness property: weak envy-freeness.
1For deterministic mechanisms in two-sided matching literature the central notion related to fairness is stability,

which guaranties the impossibility of a pair of agents profitably contracting outside of the market. This requirement
is incompatible with strategy-proofness and ex-post efficiency, similar to the results considered in this paper. See,
for example, Abdulkadiroğlu and Sönmez (2003) for a discussion of this tradeoff for a school choice problem.

2See Kesten and Yazici (2010) for discussion of ex-post fair mechanisms.
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Formally, a random assignment is weakly envy-free if for each agent her own assignment is not
strictly stochastically dominated by some other agent’s assignment. As an example, consider the
following random assignment:

h1 h2 h3

a1 .5 .0 .5
a2 .3 .4 .3
a3 .2 .6 .2

,

where all three agents a1, a2, a3 prefer object h1 to object h2, and object h2 to object h3. Then
this random assignment is weakly envy-free because none of the individual lotteries stochastically
dominates another.

Weak envy-freeness is important for several reasons. First, if one agent does not weakly envy
another, there always exist a set of Bernoulli utilities which are consistent with ordinal preferences
for which envy-freeness is strict.3 In the example above agent a1, for instance, prefers her assign-
ment to the other two whenever her preference for house h1 is strong enough. Similarly, agent a3
prefers her assignment whenever her dislike of house h3 is strong enough.

Secondly, weak-envy-freeness becomes even stronger in real-life applications, as compared to
the case of abstract rational agents, if we account for bounded rationality. To the best of my
knowledge there is no relevant research on envy in the lab, but there is a vast related literature
dealing with the so-called endowment effect, or the difference between the willingness to accept
and the willingness to pay (WTA-WTP) for some goods. In these experiments agents value the
goods that they are endowed with significantly more than the goods that they can purchase.
This result holds in different settings and for different types of goods: lotteries over monetary
outcomes, private goods such as coffee mugs and chocolate bars, and non-consumption goods such
as decreased food risk and health insurance as well as public goods. There is, unfortunately, no
WTA-WTP study for the case of lotteries over non-consumption goods, such as school slots, which
would be the most relevant framework for the random assignment problem that we consider here.
However, we can extrapolate the existing results: in their review of the WTA-WTP literature
Horowitz and McConnell (2002) find that the average WTA/WTP ratio rises significantly from
2.10 (meaning that subjects are willing to sell a good for a price that is two times higher than
the sum they are willing to pay for the same good) for the case of monetary lotteries to 10.41 for
the case of non-consumption goods. This suggests the existence of a sizable WTA/WTP ratio for

3This, however, cannot always be translated for the case of an entire random assignment since different pairwise
comparisons might require mutually incompatible utilities. In the same example above, if agent a2 does not envy
agent a1, then she necessarily envies agent a3. A random assignment for which such non-envy utilities exist is
called possibly envy-free, which is stricter than weak-envy-free. This distinction is not very common in the random
assignment literature since most of the known weak-envy-free mechanisms are also possible-envy-free. Moreover,
since our focus is on negative results, we also concentrate on the lighter notion of weak-envy-freeness. For more
detail on possible envy-freeness see Aziz et. al (2014).
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the lotteries over non-consumption goods as well.4 Therefore, one can expect that the agent is
less likely to envy others due to the endowment effect because of the readjustment of her cardinal
preferences ex-post − after being assigned a lottery. This readjustment can be relatively mild in
the case of the weak-envy-free assignment because it would not necessarily involve any change in
ordinal preferences. For instance, in the example above, the agent a1 after being endowed with
her lottery can value house h1 somewhat higher (or house h3 − somewhat lower) so that she does
not envy other agents. However, if a random assignment is not weak-envy-free, then envy can
be eliminated only if the agent changes her ordinal preferences since some other agent will have
a stochastically dominant lottery. Clearly, this type of preference adjustment is stronger since it
always implies a change of cardinal preferences and cannot be as robust as the endowment effect.

Finally, an agent who gets a non-weak-envy-free assignment can often claim to be treated
unfairly. For instance, if agent a2 in the example above preferred house h2 to all other houses,
then this assignment is not weak-envy-free. If a2 did not get her most preferred house h2 (which
happens with a 60% probability), she might justifiably claim to have been treated worse than
agent a3 since she got a stochastically dominated lottery. Once there is a legal basis for a lawsuit
of some type of discrimination, it can be based exclusively on the verifiable information (reported
preferences and the assigned lotteries) and not on the agent’s private information (as in the case
of strict envy-freeness). Clearly, it is important for the mechanism designer to avoid such risks.

All in all, weak-envy-freeness appears to be a reasonable minimum fairness requirement for
real-life mechanisms. The second result of this paper restricts, however, the set of feasible weakly
envy-free mechanisms. To understand this restriction, we need another notion of efficiency: or-
dinal efficiency,5 which implies the ex-post efficiency used in the first result. Ordinal efficiency
was first introduced by Bogomolnaia and Moulin (2001), hereinafter referred to as BM, in their
seminal paper in which they demonstrate that although RSD is efficient ex-post, it can lead to sys-
tematic inefficiencies ex-ante. In contrast, an ordinally efficient mechanism never induces random
assignments that are (first-order) stochastically dominated by some other random assignment.

In this paper I show that there does not exist a mechanism which is weak-envy-free, strategy-
proof, and ordinally efficient. This result is most strongly related to the impossibility result in BM,
that is, the mutual incompatibility of strategy-proofness, ordinal efficiency, and equal treatment of
equals (or ETE, which requires that agents with identical preferences receive identical individual
random assignments).6 ETE and weak-envy-freeness are logically independent, but the latter
applies to a much larger set of preference profiles (all possible profiles as compared to those which
contain identical preferences) and is arguably more relevant for real-life applications for the reasons
listed above.

4In a more recent study Isoni, Loomes and Sugden (2011) show that the WTA/WTP disparity is more robust
for monetary lotteries than for coffee mugs even in settings specifically designed to neutralize slight misconceptions
of agents.

5Ordinal efficiency is often called sd-efficiency for (first-order) stochastic dominance.
6Zhou (1990) shows a similar result for the case of three agents but for the cardinal preference domain.
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The last impossibility result of the paper states that there is no strategy-proof and ordinally
efficient mechanism such that its random assignments are preferred to the random uniform lottery
by all agents. The latter property is called equal division lower bound (EDLB) and it can be seen
as an individual rationality constraint if we assume that each agent is initially entitled to the equal
share 1

N
of each object and can deviate to this option in case she does not like her individual

assignment. In other words, if the problem includes the outside option of equal division, then
every strategy-proof mechanism is necessarily ordinally inefficient (and thus ex-ante inefficient).

From a practical point of view, equal division lower bound appears to be important for two
main reasons. First of all, equal division seems to be the most natural fair assignment and thus a
natural benchmark to compare all other random assignments to.7 Secondly, equal division is often
used in practice − whenever the assignment is made in the absence of or regardless of the data on
agents’ preferences, for instance. This is the case in the process of assigning Japanese teachers to
Japanese schools abroad (Nihonjin gakkō). Each successful applicant is sent for two to three years
to one of more than 80 schools all over the world regardless of his or her actual preferences.

From a theoretical point of view, equal division lower bound is related more to efficiency than
to fairness, as compared to weak envy-freeness and ETE. Unlike the other two notions, EDLB does
not compare the individual assignments to each other but to the (almost always inefficient) equal
division benchmark. Therefore, EDLB does not require the assignment to be fair in the egalitarian
sense, but only that this assignment dominates the most egalitarian assignment − equal division.

Besides RSD, another famous solution to the random assignment problem that satisfies equal
division lower bound was offered by Hylland and Zeckhauser (1979). Their mechanism uses the
concept of competitive equilibrium with equal incomes (CEEI) to fairly divide the probabilities of
the objects: agents are endowed with equal probability shares and trade them against each other
at market prices. CEEI induces efficient and envy-free random assignments but it is not strategy-
proof, which follows from both Zhou (1990) and BM. However, the question remains whether one
can construct a strategy-proof mechanism that would, similarly to CEEI, start with equal division
and eventually arrive at an efficient random assignment by mutual exchange of probability shares.
This random assignment does not need to (and cannot) satisfy the equal treatment of equals
or weak envy-freeness, but would necessarily satisfy equal division lower bound. Unfortunately,
according to the impossibility theorem, such a mechanism does not exist.

Despite the negative results presented in this paper we, however, can still hope to find a strategy-
proof, fair, and efficient mechanism in some relevant cases. For large markets in which every object
has an increasing number of copies (for example, one can think of slots in one school as copies of
a unique slot), Che and Kojima (2010) show that RSD is asymptotically ordinally efficient. For
a similar large market Kojima and Manea (2010) show that the envy-free and ordinally efficient

7An extensive review on comparison to equal division and other notions of fairness for allocation rules is made
by Thomson (2007).
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Table 1: Summary of results
Strategy-proof mechanisms

Envy-free Weak envy-free
Equal divi-

sion
lower bound

Equal treat-
ment of
equals

Ex-post
efficient

N = 3 ∅(Theorem 1, BM*) RSD! (Corollary 2) RSD
RSD!

(Corollary
1, BM)

N > 3 ∅ (Theorem 1) RSD (BM) RSD RSD
Ordinally
efficient

N > 3 ∅ ∅ (Theorem 2)
∅ (Theorem

3)
∅ (BM)

Exclamation mark denotes uniqueness, BM stands for Bogomolnaia and Moulin (2001).
*The case of three agents is also mentioned by BM, p.310, though informally.

probabilistic serial mechanism studied by BM is also asymptotically strategy-proof.8 Therefore,
the impossibility results presented here do not hold asymptotically for these types of large markets.

Finally, for the case of three agents I characterize RSD as a unique mechanism that is strategy-
proof, ex-post efficient, and that eliminates strict envy between agents with identical preferences (I
call the latter property weak envy-freeness for equals). This result also implies that a mechanism
is strategy-proof, ex-post efficient, and weak envy-free if and only if it is RSD. Similarly, it also
implies the characterization of RSD in BM, in which the authors use the equal treatment of equals
instead of weak-envy-freeness.

Weak envy-freeness for equals can be seen as a natural relaxation of both the equal treatment
of equals and the weak envy-freeness. On the one hand, weak envy-freeness for equals does not
restrict individual random assignments for two agents with identical preferences unless one of them
strictly envies another. In contrast, equal treatment of equals puts its restriction even in cases
where no agent necessarily envies someone else and such a restriction can be redundant. On the
other hand, weak envy-freeness for equals does not restrict individual random assignments of two
agents if one of them strictly envies another unless they have identical preferences, while weak
envy-freeness does so as if the mechanism designer must guarantee equitable treatment even for
different agents, which can also be seen as a redundantly strict constraint.

Table 1 summarizes the main findings of this paper as well as the relevant results of BM.
The paper proceeds as follows: Section 2 introduces the framework, section 3 presents the

first impossibility result (Theorem 1), section 4 covers the characterization result (Proposition 1)
and the second impossibility result (Theorem 2), section 5 presents the third impossibility result
(Theorem 3), and section 5 concludes by discussing the implications and the limitations of the
findings.

8Based on the probabilistic serial mechanism Budish et al. (2013) develop fair and efficient mechanisms for
various non-standard settings.

7



2 The Model

In this section I introduce the framework: define the house allocation problem, the random assign-
ment mechanism and its properties.

Let A = {a1, a2, ..., aN} be the set of N agents and H = {h1, h2, ..., hN} be the set of N houses.
Each agent a ∈ A is endowed with a strict preference relation �a on H with a corresponding weak
preference relation <a. A set of individual preferences of all agents constitutes a preference profile
�= (�a)a∈A. Let R be the set of all possible individual preferences, and RN be the set of all
possible preference profiles. In what follows we assume that the sets A and H are fixed and that
the house allocation problem is defined by the preference profile � only.

Each house allocation problem has either a deterministic solution called matching or a proba-
bilistic solution called random assignment. A random assignment P is a bistochastic matrix (with
a sum of elements in any row and any column being equal to one) of size N containing non-negative
elements. Each element Pa,h of the matrix P represents a probability of agent a being assigned
house h. Let P be a set of all possible random assignments P . A matching µ is a random assign-
ment whose elements can only be zeros or ones, so that µ precisely prescribes which agent receives
which house. LetM be a set of all possible matchings µ. According to the Birkhoff-von Neumann
theorem any random assignment P can be represented as a lottery over the set of matchingsM
(but this representation is not necessarily unique). For this reason and since agents care only
about their own assignment, we can concentrate on random assignments without specifying the
exact matchings these random assignments correspond to.

In order to compare different random assignments we need the following definitions. A set
of houses that agent a weakly prefers to some house h is the upper contour set of house h at
�a: U(�a, h) = {h′ ∈ H : h′ <a h}. Given the individual random assignment Pa the overall
probability of agent a being assigned some house that is at least as good as house h is the surplus
at h under Pa: F (�a, h, Pa) =

∑
h′∈U(�a,h)

Pa,h′ . An individual random assignment Pa (first order)
stochastically dominates another individual random assignment P ′a at �a (denoted by Pa ≥a P ′a) if
all surpluses of the former weakly exceed the surpluses of the latter: for each h ∈ H F (�a, h, Pa) ≥
F (�a, h, P ′a). A strict domination (Pa >a P

′
a) occurs under the additional condition that the two

random assignments are not equal: Pa >a P
′
a ⇐⇒ (Pa ≥a P ′a) ∧ (Pa 6= P ′a). Finally, a random

assignment P is said to (strictly) dominate another random assignment P ′ if it dominates for all
agents individually (and dominates strictly at least for one agent).

2.1 Properties of mechanisms

From here on we deal with systematic procedures called mechanisms that associate each preference
profile �∈ RN with a random assignment P ∈ P : P = ϕ(�), where ϕ denotes a mechanism.

Efficiency. One of the most important properties in the house allocation problem is efficiency.
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A matching is efficient at some preference profile if it is not dominated by any other matching at
this preference profile. A random assignment is said to be ex-post efficient (ExPE) at a preference
profile if it can be represented as a lottery over matchings that are efficient at this preference
profile. If a random assignment is not dominated by any other random assignments, it is said to
be ordinally efficient (OE). Similarly, a mechanism is said to be ex-post efficient (ordinal efficient)
if for any preference profile it results in an ex-post efficient (ordinally efficient) random assignment.

Strategy-proofness. Another important type of property which a mechanism is desired to
satisfy is strategy-proofness. A mechanism ϕ is strategy-proof (SP) if at any preference profile no
agent can benefit by misreporting her preferences: for each a ∈ A, for each �∈ RN and for each
�′a∈ R the following holds: ϕ(�) ≥a ϕa(�′a,�−a). A mechanism ϕ is said to be weakly strategy-
proof (wSP) if at any preference profile no agent can get a strictly stochastically dominating
assignment by misreporting her preferences: for each a ∈ A and each �∈ RN there does not exist
�′a∈ R such that ϕa(�′a,�−a) >a ϕa(�) .

Now I introduce an auxiliary notion of strategy-proofness that is used for the impossibility result
below. A mechanism is said to be upper-shuffle-proof (USP) if by shuffling some of the top choices in
her reported preferences an agent does not change her corresponding surplus (although she might
still benefit from using other strategies): for each a ∈ A, h ∈ H, and for each �∈ RN ,�′a∈ R
such that U(�a, h) = U(�′a, h), the following holds: F (�a, h, ϕa(�)) − ϕah(�) = F (�a, h, ϕa(�′

)) − ϕah(�′) (the difference represents the sum of assignment probabilities for houses that are
strictly better than h). Note that upper-shuffle-proofness is weaker than strategy-proofness, and
neither implies nor is implied by weak strategy-proofness since it has stronger implications than
weak strategy-proofness but applies to a smaller set of preference profiles. 9

Fairness. Finally, the third type of desirable property of a mechanism is fairness. A random
assignment P is envy-free (EF) if every agent prefers her assignment to any other agent’s assign-
ment: for each a, a′ ∈ A Pa ≥a Pa′ . A random assignment P is weakly envy-free (wEF) if no agent
strictly prefers some other agent’s assignment: there do not exist a, a′ ∈ A such that Pa′ >a Pa.
Another widely used notion of fairness is the equal treatment of equals (ETE): for each a, a′ ∈ A
with �a=�a′ the individual random assignments are identical: Pa = Pa′ . The third established
fairness notion that we use is the equal division lower bound (EDLB). A random assignment sat-
isfies the equal division lower bound if each agent weakly prefers her individual assignment to the
fair division assignment. Finally, a mechanism is said to be envy-free (weak envy-free; to satisfy
the equal treatment of equals; to satisfy the equal division lower bound) if it always results in
random assignments that are envy-free (weak envy-free; satisfy equal treatment of equals; satisfy
equal division lower bound). Note that weak envy-freeness and equal division lower bound apply
to all preference profiles but has a mild implication for a random assignment, whereas ETE applies
only to specific preference profiles and has strict implications. For this reason neither ETE nor
wEF, or EDLB imply one another, although all of them follow from envy freeness.

9Upper-shuffle-proofness is the same as lower invariance in Mennle and Seuken (2014).
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Next I introduce two auxiliary notions of fairness: upper envy-freeness and the strong equal
treatment of equals. A random assignment P is upper envy-free (UEF) if any two agents with
identical upper contour sets of some house h receive equal assignment probabilities of h: for
each a, a′ ∈ A, h ∈ H such that U(�a, h) = U(�a′ , h) it follows that Pah = Pa′h. A random
assignment P satisfies the strong equal treatment of equals (SETE) if any two agents with identical
preferences down to some house receive an identical assignment down to that house. This can also
be defined formally using upper contour sets: if two agents have identical upper contour sets of
every house g down to house h, then they also receive equal assignment probabilities of h: for each
a, a′ ∈ A, h ∈ H such that for each g ∈ A : g <a h U(�a, g) = U(�a′ , g) it follows that Pah = Pa′h.
The latter also implies that agents a and a′ receive equal probabilities for all their houses down
to h. Notice that UEF and SETE differ from the definitions of EF and ETE in that the set of
agents that can be compared is different, namely, is restricted for envy-freeness and enlarged for
the equal treatment of equals.

The six fairness notions introduced so far can be logically ordered: envy-freeness implies upper
envy-freeness, upper envy-freeness implies the strong equal treatment of equals, which in turn
implies the equal treatment of equals; weak envy-freeness and equal division lower bound are also
implied by envy-freeness but neither imply nor are implied by each other and the other properties.

Remark. The following logical relations hold:

1. envy-freeness =⇒ upper envy-freeness =⇒ strong equal treatment of equals =⇒ equal treat-
ment of equals;

2. envy-freeness =⇒ weak envy-freeness;

3. envy-freeness =⇒ equal division lower bound;

4. weak envy-freeness, equal division lower bound and upper envy-freeness (as well as strong
equal treatment of equals and equal treatment of equals) are logically independent.

The proof of these relations can be found in the appendix.
We have now prepared all necessary definitions and their logical relations to study the first

impossibility result presented in the next section.

3 First Impossibility Result

We begin by studying the tradeoff between the properties of a mechanism when fairness is of a
higher concern than efficiency. The following theorem considers the set of strategy-proof mech-
anisms that are moderately efficient (at least ex-post efficient) and very fair (envy-free, which
implies all other fairness criteria). The set of such mechanisms turns out to be empty:
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Theorem 1. For N ≥ 3 there does not exist a mechanism that is ex-post efficient, strategy-proof,
and envy-free.

The result above is a direct corollary of a stronger result of Lemma 1:

Lemma 1. There does not exist a mechanism that is ex-post efficient, upper-shuffle-proof, and
upper-envy-free.

Proof. We first prove the claim for N = 3 and we do it by contradiction. Suppose there exists a
mechanism ϕ satisfying ExPE, USP an UEF. Consider the preference profile � which is depicted
in the following figure:

�:
a1 h1 h2 h3

a2 h1 h3 h2

a3 h2 h1 h3

.

At � mechanism ϕ must induce the following random assignment:

ϕ(�) =


1
2

1
4

1
4

1
2

0 1
2

0 3
4

1
4

 .

To see that let us begin with the assignment probabilities of house h1. Agent a3 receives
zero probability ϕa3h1(�) = 0 due to ExPE of ϕ. Agents a1 and a2 receive equal probabilities
ϕa1h1(�) = ϕa2h1(�) = 1

2
since ϕ satisfies SETE (implied by UEF), otherwise the agent who

received less of her top house h1 might have envied another agent. Next, consider the assignment
probabilities of house h2. Since agent a2 dislikes house h2 while agent a3 prefers this house over
others, agent a2 is never assigned h2 due to the ExPE of ϕ: ϕa2h2(�) = 0. Therefore agent a2 is
left with one half of probability of house h3: ϕa2h3(�) = 1−ϕa2h1(�) = 1

2
. Finally, notice that the

remaining assignment probability of house h3 is spread equally between agents a1 and a3 due to
the UEF of ϕ (their upper contour sets at h3 are identical). Thus, ϕa1h3(�) = ϕa3h3(�) = 1

4
and

ϕa1h2(�) = 1
4
, ϕa3h2(�) = 3

4
.

Next consider another preference profile �′ that differs from � in that agent a3 copies the
report of agent a1:

�′:
a1 h1 h2 h3

a2 h1 h3 h2

a3 h1 h2 h3

.

Then the corresponding random assignment is as follows:

ϕ(�′) =


1
3

1
2

1
6

1
3

0 2
3

1
3

1
2

1
6

 .
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Regarding house h1 in this random assignment agents receive equal probability shares ϕa1h1(�′

) = ϕa2h1(�′) = ϕa2h1(�′) = 1
3
since ϕ is SETE. Next, due to the ex-post efficiency of ϕ agent

a2 receives zero probability of being assigned house h2 as before: ϕa2h2(�′) = 0. Therefore we
conclude that ϕa2h3(�′) = 2

3
and, again using SETE, ϕa1h2(�′) = ϕa3h2(�′) = 1

2
and ϕa1h3(�′) =

ϕa3h3(�′) = 1
6
.

Note that ϕ cannot satisfy USP since when shifting from �a3 to �′a3 the agent’s a3 upper
contour set at h3 remains the same (U(�a3 , h3) = U(�′a3 , h3)) but the assignment probability has
changed. This contradiction completes the proof for N = 3.

For N > 3 consider the following preference profile �∈ RN . Agents with indices higher than 3

prefer a house with a corresponding index to all others: ∀ai ∈ A : i > 3, ∀h ∈ H : h 6= hi =⇒ �ai :
hi �ai h . Additionally let the first three agents prefer the first three houses to any other house:
∀ai ∈ A : i, j = 1, 2, 3,∀h ∈ H : h 6= hj =⇒ �ai : hj �ai h . Their preferences for the first three
houses are as follows:

�:

a1 h1 h2 h3 ... hN−1 hN

a2 h1 h3 h2 ... hN−1 hN

a3 h1 h2 h3 ... hN−1 hN

... ... ... ... ... ... ...
ai hi ... ... ... hN−1 hN

... ... ... ... ... ... ...
aN hN ... ... ... hN−2 hN−1

.

We first show that at this preference profile due to the ExPE mechanism ϕ assigns objects with
indices higher than 3 to the corresponding agents with certainty: for each i > 3 ϕaihi(�) = 1.
Assume the opposite, namely that ϕajhj < 1 for some j > 3. For ϕ is ExPE there must be an
efficient matching µ for which µ(hj) = ak 6= aj. We now show the inefficiency of any such matching
by constructing another matching that dominates µ. Let ind() denote index function such that
for each l ≤ N ind(al) = ind(hl) = l. Consider the chain C of agents coupled with corresponding
houses that begins with (aj, hj) where the next agent in the chain is the agent assigned the house
of the previous couple at µ : C = (aj, hj), (ak, hk), (µ(hk), hind(µ(hk))), .... If at some point in C

we face one of the first three agents, then the next agent in the chain by construction must be
some agent am with the index above three that is assigned one of the first three houses (there is at
least one house among the first three which is assigned to an “outsider” with an index higher than
three), am : (m > 3) ∩ (ind(µ(am)) ≤ 3).10 Since N is finite and since each agent or object can
appear only once in a matching, such a chain C inevitably arrives at the couple (aind(µ(aj)), µ(aj))

and constitutes a cycle that includes both aj and hj. Notice that all agents in C prefer the coupled
houses to the houses assigned by µ. Therefore if they swap these houses according to C they arrive

10In other words we treat the first three agents and the first three houses as just one block-agent and one block-
house as compared to others in order to avoid any exchanges between them. For instance, if at µ agent a3 owns hk,
then there is some agent am that owns one of (a1, a2, a3). After the transformation a3 gives hk away in exchange
for this object previously owned by am.
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at a matching that dominates µ for all agents in C which contradicts the assumption that µ is
efficient and that ϕ is ex-post efficient.

Finally it is left to see that for the preference profile � we can use the same arguments as
for the case with only three agents as considered above to show that ExPE, USP and UEF are
mutually incompatible.

All three assumptions in the lemma are necessary. Should we drop the ExPE requirement, a
uniform lottery mechanism satisfies SP and EF (and, therefore, USP and UEF). If we drop the
SP requirement, then the probabilistic serial satisfies ExPE and EF (and UEF). Finally, RSD is a
natural benchmark to discuss the fairness requirement. It is easy to show that RSD is always SETE
because of the underlying SD procedure: the assignment probabilities for every house depend only
on the preferences for the corresponding upper contour set.11 In the same time RSD is not UEF,
which is true, for instance, for the preference profile � in the proof above. The lemma shows that
this gap between SETE and UEF is so big, that even a slight compromise on strategy-proofness
(requiring USP instead of SP) is not enough to close it.

Lemma 1 can be seen as a generalization of the statement in BM (p. 310) about the incompat-
ibility of ex-post efficiency, strategy-proofness, and no envy for the case of three agents. Here we
show the incompatibility of ex-post efficiency and two weaker properties: upper strategy-proofness
and upper envy-freeness for any number of agents.12

In the following section we interchange the fairness and efficiency requirements: we relax the
fairness criterion and strengthen the efficiency criterion in order to obtain a different but closely
related impossibility result.

4 Second Impossibility Result

We begin by characterizing the RSD mechanism as a unique strategy-proof, ex-post efficient, and
weak-envy-free mechanism for a problem with three agents.

Again, this result comes as a corollary of a more general result that involves a new fairness
notion: weak envy-freeness for equals (wEFE). The latter combines the properties of the two weak
fairness notions: it determines whether one agent strictly prefers some other agent’s assignment
(like in wEF) but does so only for agents with the same preferences (like in ETE).

More formally, a random assignment P is said to be weakly envy-free for equals if for no two
agents a, a′ with identical preferences �a=�a′ one of them strictly prefers the assignment of the
other: Pa′ >a Pa. A mechanism then satisfies weak envy-freeness for equals if it induces only

11This property is defined as a weak invariance in Hashimoto et. al (2014) and plays a central role in their
characterization of the probabilistic serial mechanism.

12Perhaps BM did not show this impossibility result for the general case since they had a different focus: “For
problems involving four agents and more, the impossibility result is more severe” (p.310). However, the result they
show (the incompatibility of SP, OE and ETE) is logically independent from Theorem 1 and especially from Lemma
1 since ordinal efficiency is stricter than ex-post efficiency.
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such random assignments. It is easy to see that weak envy-freeness for equals is implied by weak
envy-freeness and by equal treatment of equals.13

Before we proceed, it is important to briefly mention the proving technique that is used in the
proofs below. This technique usually involves relabeling of agents and objects in order to show the
equivalence between different preference profiles. In general we are not free to relabel the agents
or the houses without changing the random assignment, as that would require the mechanism to
have the properties known as anonymity and neutrality respectively − none of which we assume.
But if we use the properties of a mechanism (e.g., efficiency, strategy-proofness, fairness) in order
to pin down specific values of an assignment probability, these properties should hold for any other
preference profile of the same “type” and we can relabel agents and houses and get identical values
for these probabilities for other profiles of the same “type”. In other words, all the mechanism’s
properties that we consider are symmetrical with respect to any relabeling transformation. For
instance, an ex-post efficient mechanism remains ex-post efficient regardless of any relabeling, a
strategy-proof remains strategy-proof and so forth. The following Claim expresses this idea more
formally:

Claim. If for some mechanism ϕ and some preference profile �∈ RN one can determine the value
of some element in ϕah(�), a ∈ A, h ∈ H using the properties of ϕ, then this value ϕah(�) remains
the same after any relabeling of agents and houses.

Next we use the Claim in order to restrict our attention to only six types of preference profiles
(since all other preference profiles are equivalent to one of these) and pin down all the random
assignment probabilities.

Proposition 1. (Characterization of RSD) For N = 3 a mechanism is strategy-proof, ex-post
efficient, and weakly envy-free for equals if and only if it is RSD.

Proof. The necessity part follows from the fact that RSD is strategy-proof, ex-post efficient and
satisfies equal treatment of equals. We prove the sufficiency part by checking sequentially all the
preference profiles. Let ϕ be SP, ExPE and wEFE mechanism.

For N = 3 there are the following six types of preference profiles (any other preference profile
can be represented as one of these after relabeling of agents and houses as discussed in the Claim
above):

13Alternatively, one can also see the equal treatment of equals as envy-freeness for equals: if two agents have the
same preferences, one of them never envies another if and only if they have identical random assignment. Therefore
weak envy-freeness for equals is the weak form of this envy-freeness for equals property (similarly to the relationship
between envy-freeness and weak envy-freeness).
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type 1 (2 profiles):


h1 �a1 h3 �a1 h2
h1 �a2 h3 �a2 h2 ,

h2 �a3 (h1, h3)

type 4 (1 profile):


h1 �a1 h2 �a1 h3
h1 �a2 h2 �a2 h3 ,

h1 �a3 h2 �a3 h3

type 2 (2 profiles):


h1 �a1 h2 �a1 h3
h1 �a2 h3 �a2 h2 ,

h2 �a3 (h1, h3)

type 5 (2 profiles):


h1 �a1 h2 �a1 h3
h1 �a2 h2 �a2 h3 ,

h2 �a3 (h1, h3)

type 3 (1 profile):


h1 �a1 h2 �a1 h3
h1 �a2 h2 �a2 h3 ,

h1 �a3 h3 �a3 h2

type 6 (8 profiles):


h1 �a1 (h2, h3)

h2 �a2 (h1, h3) .

h3 �a3 (h2, h3)

We begin with the profile of type 1. Since ϕ is ExPE we get ϕa3h2 = 1. Therefore agents a1
and a2 receive equal expected shares of the remaining houses ϕa1h1 = ϕa2h1 = ϕa1h2 = ϕa2h2 = 1

2
,

otherwise one of them weakly envies another which is not allowed by weak envy-freeness for equals.
In type 2 due to the strategy-proofness agent a2 receives the same expected share of house h1

as before in type 1: ϕa2h1 =
1
2
. Using ExPE we get ϕa2h2 = ϕa3h1 = 0 and thus ϕa1h1 = ϕa2h3 =

1
2
.

Suppose also ϕa1h3 = x ∈ [0, 1
2
] . Then the remaining probabilities are as follows: ϕa1h2 = ϕa3h3 =

1
2
− x and ϕa3h2 =

1
2
+ x.

Next, consider the preference profile of type 3. Since both agents a1 and a2 can transform
this profile to one of type 2 considered above by switching their top objects, due to SP we get:
ϕa1h3 = ϕa2h3 = 1

2
− x. (Here we implicitly used the Claim above). Using wEFE for these two

agents and the fact that ϕa3h2 = 0 due to ExPE, we get ϕa1h2 = ϕa2h2 =
1
2
and ϕa1h1 = ϕa2h1 = x.

Consequently, the remaining expected share of house h1 goes to agent a3: ϕa3h1 = 1− 2x.
Finally, consider the symmetric preference profile of type 4. Each agent can swap her second

and third choices and transform the preference profile to that of type 3. Due to SP their expected
shares of the top house h1 are all equal: ϕa1h1 = ϕa2h1 = ϕa3h1 = 1− 2x. Therefore x = 1

3
and the

random assignments of types 1−4 are identical to RSD assignments.
Now that we have determined the unknown x it is easy to show that the random assignments

for the remaining profiles are also equal to RSD.

We get two immediate corollaries from the proposition by relaxing the weak envy-freeness for
equals requirement.

Corollary 1. (BM) For N = 3 a mechanism is strategy-proof, ex-post efficient, and satisfies the
equal treatment of equals if and only if it is RSD.
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The second corollary follows from the fact that RSD satisfies weak envy-freeness (shown in
BM):

Corollary 2. For N = 3 a mechanism is strategy-proof, ex-post efficient and weak envy-free if and
only if it is RSD.

Note that USP would not have been enough for the proof when moving from the type 1 profile
to the type 2 and also from the type 3 to the type 4. In fact, there we use weak invariance
(Hashimoto et al., 2014) − a “part” of strategy-proofness complementary to USP, that requires the
assignment probabilities to be fixed regardless of any changes in the lower contour set. Therefore,
RSD can also be characterized as a ExPE, wEFE, USP and a weakly invariant mechanism.

Next we use Corollary 2 for the second impossibility result.

Theorem 2. For N ≥ 4 there does not exist a mechanism that is ordinally-efficient, strategy-proof,
and weakly envy-free.

Proof. We prove by contradiction: assume that there exists a mechanism ϕ that is OE, SP and
wEF.

First note that it is enough to prove the claim for the problem where N = 4. For the case
of more agents, consider the preference profiles similar to the type used in the proof of Theorem
1, namely, where the first four agents prefer the first four houses over all other houses, and other
agents prefer the corresponding house of their own index to any other house. Due to ordinal
efficiency all agents with indices higher than 4 receive the corresponding houses with certainty and
the assignment problem is reduced to the size of four.

For convenience of the proof we use a different notation: instead of a preference profile we
use a rank table, that is a matrix N × N with rows (columns) corresponding to agents (houses)
and which elements are ranks of the respective house in the preferences of a respective agent. For
instance, for the preference profile �1:

a1 h1 h2 h3 h4

a2 h1 h2 h3 h4

a3 h2 h1 h3 h4

a4 h4 h2 h1 h3
the corresponding rank table r(�1) is as follows (the superscripts denote the assignment prob-

abilities):

r(�1) =

1 2 3 4

1 2 3 4

20 1
2
3 3

1
3 40

3 2 40 11

.
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For example, the rank table for agent a3 implies that she prefers house h2 to all others (h2 has
rank 1) and receives 2/3 of this house in expectation, she prefers house h1 to all others besides h2
(i.e., h1 has rank 2) and receives zero assignment probability of h1 and so forth.

Due to the ordinal efficiency of ϕ and using Corollary 2 we find that ϕ(�1) = RSD(�1).
Indeed, agent a4 is assigned house h4 with certainty and we can repeat the same arguments used
in the proof of Proposition 1 to determine the random assignment ϕ(�1).

Consider now two different preference profiles �2 and �′2:

r(�2) =

1 2 3 4

1 2 3 4

2 1 40 3

2 1 40 3

, r(�′2) =

1 2 3 4

2 1 40 3

1 2 3 4

2 1 40 3

.

Since ϕ is OE at �2 and �′2 at least two of the four agents receive zero probability of their worst
houses but not necessarily all four agents (it is exactly for this reason that we need to consider two
profiles and not just one). W.l.o.g. assume that these are agents a3, a4 for �2 and a2, a4 for �′2

(otherwise we can relabel the houses): ϕa3h3(�2) = ϕa4h3(�2) = 0 and ϕa2h3(�′2) = ϕa4h3(�′2) = 0.
We proceed with �2 and for the profile �′2 the argumentation line would be identical.

Now consider a preference profile �3 that can be obtained from �2 by changing the preferences
of agent a4 or from �1 by changing the preferences of agent a3 :

r(�3) =

1 2 3 4

1 2 3 4

20 1
2
3 4

1
3 30

30 20 40 11

.

On the one hand in the random assignment of agent a4 ϕa4h1(�3) = ϕa4h2(�3) = 0 due to
ExPE of ϕ and ϕa4h3(�3) = 0 due to SP (otherwise agent a4 might deviate to preference profile
�2). Therefore ϕa4h4(�3) = 1 and ϕa3h4(�3) = 0. On the other hand in the random assignment of
agent a3 due to SP ϕa3h1(�3) = 0 and ϕa3h2(�3) = 2

3
as it was at the preference profile �1.

Next consider the preference profile �4 obtained from �3 but where agents a3 and a4 have
identical preferences:

r(�4) =

1 2 3 40

1 2 3 40

30 2
1
6 4

1
3 1

1
2

30 2
1
6 4

1
3 1

1
2

.

Notice first that ϕa3h3(�4) = 1
3
remains the same as in �3 due to SP. Secondly, due to ExPE

ϕa1h4(�4) = ϕa2h4(�4) = 0 and ϕa3h1(�4) = ϕa4h1(�4) = 0. Thirdly, agent a4 has to have the
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same random assignment as agent a3 since their preferences are identical and we could do the same
procedure where a3 and a4 are swapped (namely pick a3 in �2 and construct a profile analogous
to �1). Therefore ϕa3h4(�4) = ϕa4h4(�4) = 1

2
and ϕa3h2(�4) = ϕa4h2(�4) = 1

6
.

Now we are going to change the preferences of agents a3 and a4 sequentially so that they look
symmetric to the preferences of a1 and a2. Consider the preference profile �5 in which agent a4
swaps her third and forth best houses as compared to �4:

r(�5) =

1 2 3 40

1 2 3 40

30 2
1
6 4

1
3 1

1
2

40 2
1
6 3

1
3 1

1
2

.

Note that ϕa4h4(�5) = 1
2
and ϕa4h2(�5) = 1

6
due to SP and also that ϕa1h4(�5) = ϕa2h4(�5) = 0

and ϕa3h1(�5) = ϕa4h1(�5) = 0 due to ExPE. Therefore ϕa3h4(�5) = ϕa4h4(�5) = 1
2
and using

wEF for a3 and a4 we then get that ϕa3h2(�4) = ϕa4h2(�4) = 1
6
.

Now we do the same swap with houses h1 and h3 in the preferences of agent a3 and calculate
her random assignment using the same argument as above:14

r(�6) =

1 2 3 40

1 2 3 40

40 2
1
6 3

1
3 1

1
2

40 2
1
6 3

1
3 1

1
2

.

This result is derived from the fact that ϕa3h3(�2) = ϕa4h3(�2) = 0. But if we use the same
procedure for �′2 instead of �2 then we get the following random assignment for a profile �′6:

r(�′6) =

1 2 3 40

40 2
1
6 3

1
3 1

1
2

1 2 3 40

40 2
1
6 3

1
3 1

1
2

.

The preference profile �′6 is effectively identical to �6 if we relabel houses h1 and h4 and agents
a1 and a4. Due to the Claim at the beginning of this section we can conclude that agent a2 at
�6 has to have the same random assignment as at �′6: ϕa2h1(�6) = ϕa2h4(�′6) = 1

2
, ϕa2h2(�6) =

ϕa2h2(�′6) = 1
6
and ϕa2h3(�6) = ϕa2h3(�′6) = 1

3
. Then the full random assignment at �6 is as

follows:
14If in �6 we relabel houses h1 and h4 and then swap agents a1, a2 and, on the other hand, a3, a4, then we

get the same preference profile �6. However, we would not be able to draw any conclusion regarding the random
assignment for agents a1 and a2 at �6 (agents a3, a4 after relabeling) since we did not determine the specific values
and cannot use the logic of the Claim. For this reason we need a parallel procedure that begins with �′2 and ends
with �′6.
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r(�6) =

1
1
2 2

1
2 30 40

1
1
2 2

1
6 3

1
3 40

40 2
1
6 3

1
3 1

1
2

40 2
1
6 3

1
3 1

1
2

.

Finally, agent a2 weakly envies agent a1 which is a contradiction.

It is easy to see the independence of axioms in Theorem 2. First, let us weaken the ordinal
efficiency requirement and demand ex-post efficiency. Then there exist at least one ex-post efficient,
strategy-proof, weakly envy-free mechanism: random serial dictatorship. Next, let us drop the
weak-envy-freeness requirement. Then there exists at least one strategy-proof, ordinally efficient
mechanism: serial dictatorship. Finally, the probabilistic serial mechanism is an example of an
ordinally efficient, (weakly) envy-free mechanism.

5 Third Impossibility Result

The last impossibility result also uses a strong notion of efficiency and a weak notion of fairness,
but this time fairness is defined by the equal division lower bound.

Theorem 3. For N ≥ 4 there does not exist a mechanism that is ordinally-efficient, strategy-proof,
and satisfies the equal division lower bound.

Proof. The proof is by contradiction: assume that such a mechanism ϕ exists.
As before, we first prove the claim for the case N = 4, which can be generalized for a higher

number of agents using certain preference profiles.
Consider the preference profile �1 with the following rank table:

r(�1) =

1
1
4 2

1
2 30 4

1
4

1
1
4 2

1
2 30 4

1
4

1
1
4 30 2

1
2 4

1
4

1
1
4 30 2

1
2 4

1
4

.

As before, the superscripts denote the random assignment ϕ(�1). Indeed, due to EDLB each
agent has a right to receive at least 1

4
of her most preferred house h1 and at most 1

4
of her

least preferred house h4. Then, due to ordinal efficiency, either ϕa1h3(�1) = ϕa2h3(�1) = 0 or
ϕa3h2(�1) = ϕa4h2(�1) = 0 and, as it turns out, both conditions hold.

Consider now a profile �2 that is derived from the previous profile using the swap of houses h3
and h4 in the preferences of agent a1:

r(�2) =

1
1
4 2

1
2 40 3

1
4

1
1
4 2

1
2 30 4

1
4

1
1
4 30 2

1
2 4

1
4

1
1
4 30 2

1
2 4

1
4

.
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The random assignment ϕ(�2) is the same as before for the following reasons. First, the
random assignment of house h1is symmetric due to EDLB. Second, ϕa1h2(�2) = 1

2
because of SP

(otherwise agent a1 might deviate from/to �1). Third, ϕa1h3(�2) = 0 due to ExPE, implied by
ordinal efficiency. As a result, we find the remaining element ϕa1h4(�2) = 1

4
. Therefore, the random

assignment of the house h4 is again symmetric due to EDLB. Finally, using the ordinal efficiency
argument we find the random assignment of houses h2 and h3: ϕa1h3(�2) = ϕa2h3(�2) = 0 and
ϕa3h2(�2) = ϕa4h2(�2) = 0 (again: only one of these conditions has to be satisfied due to OE, but
in fact both of them hold because of the previous findings).

Next, consider the preference profile �3 derived using the same swap of houses h3 and h4 but
this time for agent a2:

r(�3) =

1
1
4 2

1
2 40 3

1
4

1
1
4 2

1
2 40 3

1
4

1
1
4 30 2

1
2 4

1
4

1
1
4 30 2

1
2 4

1
4

.

It turns out that the random assignment is again the same. First, ϕa1h3(�2) = ϕa2h3(�2) = 0

due to ExPE. Second, both ϕa1h2(�3) and ϕa2h2(�3) are equal to 1
2
because of SP (otherwise one of

the two agents a1,a2 would have switched from/to preference profile �2). The rest of the random
assignment can be found using EDLB as before.

Next we consider a different preference profile �4 in which the agents have opposite tastes
regarding the other pair of houses: h3 and h4 (and not h2 and h3 as before):

r(�4) =

1
1
4 2

1
4 40 3

1
2

1
1
4 2

1
4 40 3

1
2

1
1
4 2

1
4 3

1
2 40

1
1
4 2

1
4 3

1
2 40

.

The random assignment ϕ(�4) can be determined using the same argumentation line as in the
case of �1.

Finally, we consider the preference profile �5, which can be derived from the profile �4 using
a swap of houses h2, h3 in the preferences of agent a4, and in the same time from the profile �3

using the swap of houses h2, h3 in the preferences of agent a3:

r(�5) =

1
1
4 2 40 3

1
1
4 2 40 3

1
1
4 2

1
4 3

1
4 4

1
4

1
1
4 30 2

3
4 40

.

The random assignment ϕ(�5) can be determined using the following arguments. First, since ϕ
is SP, the elements ϕa3h4(�5) and ϕa4h4(�5) must correspond to the elements of ϕ(�3) and ϕ(�4)

respectively: ϕa3h4(�5) = 1
4
and ϕa4h4(�5) = 0. Second, we apply the ordinal efficiency argument

to houses h3 and h4 and find that since ϕa3h4(�5) = 1
4
> 0, the corresponding probabilities of

agents a1, a2 are zero: ϕa1h3(�5) = ϕa2h3(�5) = 0. Third, due to ExPE ϕa4h2(�5) = 0. Fourth, the
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assignment of house h1 is identical due to EDLB. Therefore ϕa4h3(�5) = 3
4
and then ϕa3h3(�5) = 1

4

and ϕa3h2(�5) = 1
4
.

So far there is no contradiction with our assumptions. However, the fact that ϕa3h2(�5) equals
1
4
and is therefore different from ϕa1h2(�5) or ϕa2h2(�5) (since their sum has to be equal to one)

contradicts the strategy-proofness of ϕ. Indeed, consider the profile �6 which is different from �5

in that agent a3 swaps her preferences for houses h3 and h4 and thus becomes identical to agents
a1 and a2:

r(�6) =

1
1
4 2

1
4 4 3

1
1
4 2

1
4 4 3

1
1
4 2

1
4 4 3

1
1
4 3

1
4 2 4

.

Since any of the agents a1, a2, a3 could swap their least preferred houses h3, h4 in order to
deviate from/to �5, due to strategy-proofness of ϕ we conclude that ϕa1h2(�6) = ϕa2h2(�6) =

ϕa3h2(�6) = 1
4
and therefore ϕa4h2(�5) = 1

4
which contradicts the ex-post efficiency of ϕ.

An important implication of Theorem 3 is the restriction that it puts on the feasibility set of
mechanisms that dominate RSD. Notice first that RSD satisfies the equal division lower bound.
Indeed, in the RSD procedure each agent has an equal chance to be the first in the ordering (and
thus receive her first best house), the second (and thus receive at least her second best) and so
on. Therefore, under the RSD assignments all agents are weakly better off than under the uniform
lottery.

Corollary 3. For N > 3 any ordinally efficient mechanism that dominates RSD is not strategy-
proof.

The corollary, however, does not restrict the set of mechanisms that dominate RSD without
being ordinally efficient. Thus, in the set of strategy-proof mechanisms there might still be room
for improvement upon RSD.

6 Conclusions

This paper considers the standard random assignment problem of assigning N indivisible objects
to N agents and shows the impossibility for a strategy-proof mechanism to be simultaneously fair
and efficient (in three specific ways). Theorem 1 shows the impossibility to combine a weak notion
of efficiency − ex-post efficiency, with a strong notion of fairness − envy-freeness; it is the first
known impossibility result in the related literature that involves ex-post efficiency. Theorem 2
shows the impossibility for the opposite set of properties: a weak notion of fairness − weak envy-
freeness and a strong notion of efficiency − ordinal efficiency. I also show that for the case of three
agents the trinity of strategy-proofness, ex-post efficiency, and weak envy-freeness for agents with
identical preferences uniquely defines the random serial dictatorship mechanism. Finally, Theorem
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3 shows a similar impossibility result with a different weak fairness notion: equal division lower
bound.

The first theorem is, perhaps, of the highest importance for the practical implementation of
matching and random assignment mechanisms since it deals with the commonly required properties
of strategy-proofness and ex-post efficiency. The other two theorems resemble the impossibility
result of Bogomolnaja and Moulin (2001), although with arguably more relevant notions of fairness.

All three results in this paper can also be considered as a support for using RSD in random
assignment problems when strategy-proofness is of high importance. As demonstrated in the
Introduction, strategy-proofness, ex-post efficiency, and weak envy-freeness are strongly desirable
properties for a mechanism used in real-life applications, while the equal division lower bound
might be important when switching from one mechanism to another. Not only does RSD possess
all four of these properties, but, as this paper demonstrates, it is also impossible to improve on any
of the weak properties: to demand ordinal efficiency instead of ex-post efficiency, or envy-freeness
instead of weak envy-freeness.

Moreover, when there are only three agents RSD is the unique strategy-proof and ex-post
efficient mechanism that satisfies the weakest (among presented here) fairness notion: weak envy-
freeness for equals. It, however, remains unclear, what combination of properties characterizes
RSD for the general case. The characterization result in this paper cannot be directly generalized
even for the case of four agents (however, there are also no counter examples found). The reason
for this is that weak envy-freeness (and especially weak envy-freeness for equals) is not handy
enough as compared to the equal treatment of equals. For instance, for two agents with identical
preferences weak envy-freeness gives precise implications only in case these agents receive identical
probabilities for all but two objects. Then the two agents have to have the same random assignment
for the remaining objects as well. Equal treatment of equals, on the contrary, has implications for
the assignment probabilities of all objects. Therefore, I believe, generalizing this characterization
result would be more difficult than the result which uses equal treatment of equals.

Another open question is to what extent can one of the three properties be satisfied should the
other two be taken at their extreme. For instance, if ordinal efficiency and envy-freeness are sat-
isfied, then the probabilistic serial mechanism appears to be the “most” strategy-proof mechanism
since it is weakly invariant (limits the set of profitable deviations) and weakly strategy-proof (which
means that no agent can receive a stochastically dominant assignment by manipulating). Similarly,
one could be interested in the “most fair” mechanism that satisfies strategy-proofness and ordinal
efficiency (since the only known SD mechanism is very unfair), and in the “most” efficient mecha-
nism that satisfies strategy-proofness and envy-freeness (again, the only known equal division or
pure lottery mechanism disregards preferences and therefore is almost always inefficient).

It should also be mentioned that some of the results of this paper are limited by the nature
of the standard framework that is used. In a more general setting where the number of houses is
higher than the number of agents, especially in the case with an outside option or a null object,
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the agents have a richer strategy set and thus the results cannot be directly transferred to that
setting. For instance, in such settings RSD loses ex-post efficiency and can be dominated by a
strategy-proof mechanism (see Erdil (2014) for these and other results in the general setting).
However, the main negative results must hold since the standard setting is the special case of the
general setting.
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A Appendix

Proof of the Remark in section 2.

Proof. Envy-freeness=⇒ upper envy-freeness. We need to show that for each envy-free random
assignment P it follows that for each a, a′ ∈ A and each h ∈ H if U(�a, h) = U(�a′ , h) then
Pah = Pa′h. First note that F (�a, h, Pa) = F (�a′ , h, Pa′) since otherwise one of the two agents
might envy another (e.g., if she is almost indifferent between all objects in her upper contour set
of h). Then notice that F (�a, ha, Pa) = F (�a′ , ha′ , Pa′) where ha and ha′ are the least preferred
objects in U(�a, h)\{h} and U(�a′ , h)\{h} respectively − for the same reason as earlier. Finally
Pah = F (�a, h, Pa)−F (�a, ha, Pa) and Pa′h = F (�a′ , h, Pa′)−F (�a′ , ha′ , Pa′) which completes the
proof.

Upper-envy-freeness =⇒ strong equal treatment of equals. Here we need to show that for each
upper envy-free random assignment P it follows that for each a, a′ ∈ A with identical preferences
down to some h ∈ H the random assignment down to this h is the same or, more formally, for
each h′ ∈ H such that h′ �a h and h′ �a′ h it follows thatPah′ = Pa′h′ . We prove by induction:
consider the top object h1 : h1 �a h′ for each h′ ∈ H (and h1 �a′ h′ since the preferences down
to h are identical). Using the upper envy-freeness for h1 (since U(�a, h1) = U(�a′ , h1)) we get
Pah1 = Pa′h1 . We then do it for the second top object and so forth until we reach h which would
complete the proof.

Strong equal treatment of equals =⇒ equal treatment of equals. For ETE we need to consider
only agents with identical preferences. Clearly, for any two of these agents the strong equal
treatment of equals implies equal treatment of equals since SETE applies to all objects.

Envy-freeness =⇒ weak envy-freeness. This is true since if agents prefer their own assignments,
then none of them strictly prefers the assignment of someone else.

Envy-freeness =⇒ equal division lower bound. Consider some agent a ∈ A and her top object
h1 ∈ H. Since the assignment P is envy-free there is no agent a′ with Pa′h1 > Pah1 (otherwise a
could possibly envy a′). Therefore agent a gets at least her fair share of object h1 of 1

N
. Next,

consider the two top objects {h1, h2} of agent a. Similarly, there is no agent a′ with the total
probability (Pa′h1 + Pa′h2) higher than the total probability of agent a for the same two objects
(otherwise a would envy a′ once she is indifferent between h1 and h2 and does not care as much
about the rest). Therefore the total probability (Pah1 + Pah2) is at least as high as the fair share
2
N
. We use the same logic for the other objects and find that agent a is weakly better off under P

than under the equal division.
Independence of properties. Finally, it is left to show the mutual independence of the weak

notions of fairness which is fairly easy to do by a contour example for each two notions. Indeed,
these examples are easy to come up with since all the notions have a different nature: UEF, SETE
and ETE can be applied to those preference profiles in which some preferences are (partially)
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identical; wEF and EDLB apply to all preference profiles but wEF compares assignments between
different agents, while EDLB compares them to the fair division.
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