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Abstract

This paper studies stochastic dynamic contracting between a principal

and an agent, whose type evolution follows a Markov process. I analyze

contracts in which the agent can terminate the contract in every period

whereas the principal has full-commitment to her offer. The principal tries

to screen the true type of the agent to maximize her profit. Therefore, she

wants to incentivize him to reveal his true type. I show that stochastic

contracts can never bring about more profits than deterministic contracts

for the principal if the first-order approach is valid. For this result, it

is immaterial if stochastic contracts depend on earlier realizations of the

contract or not.

1 Introduction

Many contractual relationships take place in a dynamic setting, involving a long-

term interaction between a principal and an agent in which the agent has private

information captured via his type.

In this paper, I study stochastic dynamic contracting with asymmetric in-

formation between a principal and an agent. The agent has private information

about his type, which changes over time via a Markov process. I assume that

only the agent knows his current type but neither he nor the principal knows fu-

ture type realizations. I analyze contracts in which the agent can terminate the

contract in every period, whereas the principal has full commitment to her offer.

The principal tries to screen the true type of the agent to maximize her profit.
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She wants to incentivize him to reveal his true type and to make sure that he

continues the contract. Therefore, in every period, she has to take into account all

constraints of incentive compatibility (IC) and individually rationality (IR). My

main result is that deterministic contracts are always better if the IR-constraints

only bind for the lowest types and if only downward binding IC-constraints have

to be taken into account, which is the so-called first-order approach in the sense

of Rogerson (1985).

There are a lot of imaginable situations, where a principal interacts with an

agent over long period. For instance, one can imagine relationships between

a financier and a firm, between an employer and an employee or between an

insurance company and a holder. In all these examples, the agent’s status (type)

can change over time but it remains rather persistent. For instance, one could

think of employer’s productivity as the agent’s type, which is persistent over a

long time but can change exogenously, like after an accident. Stochastic contracts

in which both parties play a lottery are rarely concluded. But this still raises the

question, if they could yield a higher profit to the principal and if so, under which

circumstances.

This is why most of the literature focuses only on deterministic contracts.

The first paper which analyzes the situation of dynamic interaction between a

principal and an agent is Baron and Besanko (1984). In their paper, they extend

the static “envelope theorem” to a dynamic framework, for two special dynamic

situations: First, when types are constant over time. In this situation, the con-

tract is just a repetition of the static contract in every period. Second, when the

type realizations are independently drawn. This yields that the contract achieves

the first-best allocation in every period after the first period.

If one allows, however, for correlated and not perfectly persistent types, it is

a priori not clear whether deterministic contracts could do better than stochastic

ones. For instance, stochastic contracts could open another profitable channel to

screen the agent’s type. In a standard one period model, it suffices to restrict to

deterministic contracts under very mild assumptions, which is shown in Strausz

(2006). He shows that this is true as long as the solution of the first-order

approach is monotonic, i.e. higher types obtain higher quantities. In a dynamic

setting, however, monotonicity is a very strong requirement which fails in a lot

of conceivable situations. Battaglini (2005) analyzes long-term contracts where
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the agent’s type realization has only two outcomes following a Markov process,

in which it is more probable that the two types will remain the same. He shows

the “generalized no distortion at the top principle”: Once the agent reports high

type, he will be assigned with the first-best allocation in any further period,

regardless of future type realizations. The reason for this is that today’s report

gives a signal to future realizations and the principal is able to extract expected

rents initially. Battaglini and Lamba (2014) show that this happens for larger

type spaces as well.

My setting of the model is mostly based on the model of Battaglini and

Lamba (2014). Like in their paper, I assume that neither the agent nor the prin-

cipal know future types, but one can extract information about the distribution

of future types due to correlation of types between current and next period. To

fulfill certain type persistence, I assume first-order stochastic dominance of the

conditional distribution functions, which is a common assumption in the litera-

ture. This guarantees the “generalized no distortion at the top principle”. After

signing the offered contract, the agent decides to continue or to terminate the

relationship. Once he terminates the contract, he has no possibility to renew the

contract. Furthermore, I do not allow for renegotiation, which means that the

principal has full commitment to her initially offered contract.

In this paper, I analyze whether stochastic contracts could yield a higher

expected payoff to the principal. I show, however, that such contracts can never

bring about more profit if the first-order approach is valid, that is if local-incentive

constraints are sufficient for implementation. This result is a dynamic extension

of Strausz (2006) and it is in accord with a remark in Pavan et al. (2014), where

they claim it without a formal proof.

The paper is organized as follows: In Section 2, I introduce the setting of the

model based on the notations of Battaglini and Lamba (2014) with stochastic im-

plementation functions. In Section 3, I show explicitly, why stochastic contracts

do not yield higher payoffs for the principal. Finally, in Section 4, I present my

conclusions.
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2 Model

There are two players, a principal and an agent. The principal offers a contract

over a finite time horizon T > 2. The set of the time horizon is denoted by

T := {1, . . . , T} 1. If the contract is concluded, the principal sells in every period

t ∈ T a potentially stochastic quantity of a good, which depend on current and

previous type reports as well as on realizations of previous quantity schedules. In

the first period, the agent has the opportunity to accept or reject the contract.

In every later period t ∈ T \{1}, he decides to continue or to terminate the

relationship. Once the agent terminates the contract, he has no possibility to

rejoin the contract. Furthermore, I do not allow for renegotiation, hence the

principal has full commitment to the initially offered contract.

2.1 Basic Assumptions

Let Θ := {θN , . . . , θ0} ⊂ R be the agent’s type space with θi−1 − θi > 0 for all

i ∈ I\{0}, where I := {0, . . . , N} is the set of all indices of types. The initial

type of the agent is chosen from a prior distribution f(θi) =: µi ∈ ]0, 1[ for all

i ∈ I, with
∑

i∈I µi = 1, which is common knowledge. Its cumulative distribution

function is therefore F (θi) =
∑N

j=i µj, for all i ∈ I. In all later periods the type

changes according to a Markov process. The probability that the agent’s type

changes from θi to θj is given through f(θj|θi) =: αij ∈ ]0, 1[, for all i, j ∈ I

and for every period t ∈ T . This reflects the Markov property of independence

regarding time and earlier types. It fulfills
∑N

j=0 αij = 1, for all i ∈ I and for

simplicity, I assume full support of the conditional distribution, i.e. αij > 0 for all

i, j ∈ I. The corresponding cumulative distribution function F is given through

F (θk|θi) =
∑N

j=k αij, for all i, k ∈ I.

I also follow the usual convention of first order stochastic dominance, i.e.

F (θk|θi) > F (θk|θi−1), for all k ∈ I and all i ∈ I\{0}. I define for all k ∈ I and

all i ∈ I\{0} the nonnegative expression

∆F (θk|θi) := F (θk|θi)− F (θk|θi−1).

In the situation of two types, the nonnegativity guarantees that it is more likely

1It is not important for the analysis if T is finite or not. The results still hold for T = ∞,
the proofs become however more extensive.
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to remain the same type. Therefore, the assumption of first order stochastic dom-

inance can be interpreted as a generalization, which captures a certain persistence

feature of types.

In the following, I use the notation θt to characterize the agent’s type in

period t ∈ T 2. Moreover, let θt ∈ Θt be the evolution vector θt := (θ1, . . . , θt)

of agent’s types from period 1 up to period t, for all t ∈ T . The whole type

path is denoted by θ := θT ∈ ΘT . In addition, let Θt+τ (θt) := {ϑt+τ ∈ Θt+τ :

ϑs = θs, ∀1 6 s 6 t}, for all t ∈ T , all θt ∈ Θt and all 0 6 τ 6 T − t.

Furthermore, let qt := (q1, . . . , qt) ∈ Rt
+ be the vector of quantity realizations

and pt := (p1, . . . , pt) ∈ Rt the price-vector, each from period 1 up to period

t ∈ T , where pt = p(qt) and q := qT , p := pT the corresponding vectors over the

whole time horizon T . It is necessary to take into account that both qt and pt

depend on the current report θt and earlier reports and realizations. Recursively,

one can denote qt as the occurred realization of q(θt|qt−1, θt−1) for all t ∈ T ,

whereby q0, θ0 ∈ ∅.

2.2 Stochastic contracts

Since I allow for stochastic contracts, I distinguish between the realized quantity

qt and the random variable q(θt|ht−1), which depends on agent’s report θt in

the current period and the history ht−1 of previous reports θt−1 and quantity

realizations qt−1. Here, I use ht := (θt, qt) the history of previous types and

occurred realizations with ht ∈ H t := Θt×Rt
+, for all t ∈ T and let h0 ∈ H0 := ∅.

Therefore, q(θt|ht−1) defines on the image space (R+,B(R+)) the implementation

function

ξ(·|ht−1, θt) : R+ −→ [0, 1],

ξ(qt|ht−1, θt) = P(q 6 qt|ht−1, θt),

for all qt ∈ R+.

Indeed, the principal can choose the weights of possible outcomes over R+ of

the implementation function depending on the history of type reports θt−1, the

2The notation θt characterizes the stochastic process of agent’s type which takes values in
Θ, whereas θi specifies a possible event of agent’s type in any period. Therefore, expressions
like θ1 are ambiguous, but it should become clear in the specific situation.
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current report θt and the history of previous realized quantities qt−1. This, how-

ever, creates in addition to the reports of agent’s type, a second uninformative

channel for both, the agent and the principal. Furthermore, it allows for interde-

pendences between the random variables over several periods. Only in the initial

period t = 1, the implementation function ξ(q1|h0, θ1) = ξ(q1|θ1) does not depend

on other realized quantities. I use the notation

ξθt(qt|qt−1) := ξ(qt|ht−1, θt), (1)

which illustrates the dependence of ξ of current and previous reports. With Bayes’

rule and the fact that qt−1 is independent of θt one obtains dξθt(qt|qt−1)dξθt−1(qt−1|qt−2) =

dξθt(qt−1, qt|qt−2) for all t ∈ T \{1} and hence

dξθt(qt|qt−1) . . . dξθ1(q1) = dξθt(q
t),

for all t ∈ T . Hence, ξθ = ξθT reflects the implementation function of the whole

allocation vector q ∈ RT
+.

2.3 Agent’s continuation utility

After signing the contract, the agent receives in every period t ∈ T a quantity

qt ∈ R+ chosen from a lottery for a price pt ∈ R. This generates a per-period

utility of u(θt, qt)−pt for the agent. As in the literature, I assume that u satisfies

several assumptions. It is twice continuously differentiable in both arguments,

increasing in both arguments, with u(·, 0) = 0, is concave in qt and satisfies the

single crossing condition, i.e. marginal utility is higher for higher types. These

conditions are summarized in

Assumption 1. The per-period utility function u satisfies

• u(·, 0) = 0,

• ∂u/∂q > 0,

• ∂u/∂θ > 0,

• ∂2u/∂q∂θ > 0,

• ∂u/∂q2 6 0.
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The agent discounts future utilities by δ ∈]0, 1[. Therefore, one can define the

agent’s continuation utility recursively as

Definition 1. The agent’s continuation utility in period t ∈ T is given through

U(θt|ht−1) :=

∫ ∞
0

u(θt, qt)− pt + δ
∑

θt+1∈Θ

f(θt+1|θt)U(θt+1|ht−1, θt, qt)

 dξθt(qt|qt−1),

(2)

for all truthfully reported θt ∈ Θ, all histories ht−1 ∈ H t−1 and all t ∈ T .

It captures the expected utility of current utility and the discounted expec-

tation of future continuation utilities that considers that the type changes with

probability f(θt+1|θt).

2.4 Principal’s offer

In every period t ∈ T , the principal produces qt given a cost function c(qt). This

function fulfills some usual conditions. There are no fixed costs, it is twice contin-

uously differentiable, increasing and convex. To guarantee an interior solution, I

assume that marginal costs vanish at 0 and tend to infinity if the quantity tends

to infinity. These conditions are stated in

Assumption 2. The cost function c satisfies

• c(0) = 0,

• c′(q) > 0, for all q > 0,

• c′(0) = 0,

• limq→∞ c
′(q) =∞,

• c′′(q) > 0.

The principal offers a stochastic contract {p, ξθ} in the initial period, which

includes a sequence of prices and implementation functions that yield the re-

alizations of the quantities q. Equivalently to {p, ξθ}, the principal can offer

{U, ξθ}, where U represents the vector U = (U(θ1|h0), . . . , U(θT |hT−1)) of agent’s

continuation utility.
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The time structure is as follows. At the beginning, the agent learns his initial

type θ1 ∈ Θ. Then, the principal offers a contract {U, ξθ} which incorporates in

every period t all possible type reports θt of the agent and all possible histories

ht−1 ∈ H t−1. After the contract proposal, the agent decides whether to accept or

reject the offer. If he accepts, he gives in a report θ1 and ξθ1(q
1) is realized. In the

beginning of every later period t > 1, the agent learns his new type drawn from

f(θt|θt−1) and decides to continue or terminate the contract. If he continues, he

gives in a new report θt and ξθt(qt|qt−1) is realized.

Since in every period, the agent can terminate the contract, the principal has

to take into account the IR-constraints in every period. If the agent terminates,

he cannot resume to the contract, therefore the IR-constraint IR(θt|ht−1) can be

described as

U(θt|ht−1) > 0, (3)

for all θt ∈ Θ, all ht−1 ∈ H t−1 and all periods t ∈ T .

For the IC-constraints, in every period t ∈ T , the principal has to give incen-

tives to the agent to report his true type θt ∈ Θ instead of any other type ϑt ∈ Θ.

Since the history-path ht−1 only depends on previous type reports and not on

previous true types, the IC-constraint IC(θt, ϑt|ht−1) can be characterized by

U(θt|ht−1) > U(ϑt|ht−1) +

∫ ∞
0

(u(θt, qt)− u(ϑt, qt))dξ(θt−1,ϑt)(qt|qt−1)

+ δ
∑

θt+1∈Θ

(f(θt+1|θt)− f(θt+1|ϑt))
∫ ∞

0

U(θt+1|ht−1, ϑt, qt)dξ(θt−1,ϑt)(qt|qt−1),

(4)

for all θt, ϑt ∈ Θ, all ht−1 ∈ H t−1 and all periods t ∈ T . Note that only one time

deviations have to be considered since after any deviation to ϑt, the highest future

continuation utility is given by U(θt+1|ht−1, ϑt, qt) if all future IC-constraints are

fulfilled.

Given these inequalities the principal’s objective is to maximize her expected

surplus, i.e.

max
{U,ξθ}

{∑
θ1∈Θ

f(θ1)(S(θ1)− U(θ1))
}
, (5)
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s.t. (3) and (4) are satisfied, whereby

S(θt|ht−1) :=

∫ ∞
0

s(θt, qt) + δ
∑

θt+1∈Θ

f(θt+1|θt)S(θt+1|ht−1, θt, qt)

 dξθt(qt|qt−1)

(6)

is the aggregated continuation surplus and s(θt, qt) := u(θt, qt) − c(qt) the per-

period aggregated surplus in period t, for all t ∈ T , with S(θT+1|hT ) := 0, for all

histories hT ∈ HT .

The purpose of this paper is to show that optimal deterministic contracts

which fulfill all individually rationality (IR) and incentive compatibility (IC) con-

straints of the agent are still optimal under the first-order approach if one allows

for stochastic contracts.

3 Optimal contracting under the first-order ap-

proach

One first consideration is a situation in which in every period t ∈ T the IR-

constraint only binds for the lowest type θt = θN and the IC-constraints only bind

downward, i.e. type θt = θi is indifferent between reporting θi and ϑt = θi+1. If

it is sufficient to involve only these constraints into the contract, then it is first-

order optimal and the first-order approach holds. In this framework, first-order

optimality is characterized similarly to Battaglini and Lamba (2014) by

Definition 2. A contract is first-order optimal if and only if it maximizes profits

if {IR(θt = θN |ht−1)}t∈T and {IC(θt = θi, ϑt = θi+1|ht−1)}t∈T bind, for all i ∈
I\{N}, and the other constraints can be disregarded.

In a dynamic setting, it is a priori not clear why deterministic contracts should

be superior to stochastic ones. However, it turns out that deterministic contracts

are superior to any stochastic contract as long as the first-order approach holds.

Therefore, the results of Battaglini and Lamba (2014) are still optimal in the set

of stochastic contracts. In order to show that this is in fact the case, I first derive

an explicit representation of principal’s maximization problem (5) with respect

to {IR(θt = θN |ht−1)}t∈T and {IC(θt = θi, ϑt = θi+1|ht−1)}t∈T , for all i ∈ I\{N}.
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For all i ∈ I\{0}, I use the notation ∆u(θt = θi, q(θt = θi|qt−1, θt−1)) :=

u(θt = θi−1, q(θt = θi|qt−1, θt−1))− u(θt = θi, q(θt = θi|qt−1, θt−1)), to characterize

the net-utility of type θi−1 compared to type θi if both report θi in period t ∈ T .

If the current type is not specified, this net-utility is denoted by ∆u(θt, qt). The

virtual surplus in period τ ∈ T is defined by

v(θτ , qτ ) := s(θτ , qτ )−
1− F (θ1)

f(θ1)

τ−1∏
s=1

∆F (θs+1|θs)
f(θs+1|θs)

∆u(θτ , qτ ).

This allows to state the following result:

Lemma 1. Involving all IR- and IC-constraints of the first-order approach, prin-

cipal’s objective (5) has the explicit representation∑
θ1∈Θ

f(θ1)(S(θ1)− U(θ1)) =

T−1∑
τ=0

δτ
∑

θτ+1∈Θτ+1

f(θ1)
τ∏
s=1

f(θs+1|θs)
∫
Rτ+1
+

v(θτ+1, qτ+1)dξθτ+1(qτ+1). (7)

To prove this Lemma, I show first two other necessary Lemmata:

Lemma 2. If the first-order approach is valid, the agent’s continuation utility

U(θt|ht−1) has the explicit representation

U(θt = θi|ht−1) =
N∑

j=i+1

T−t∑
τ=0

δτ
∑

θt+τ∈Θt+τ (θt−1,θj)

t+τ−1∏
s=t

∆F (θs+1|θs) ·∫
Rτ+1
+

∆u(θt+τ , qt+τ ) dξθt+τ (qt+τ , . . . , qt|qt−1),

for all i ∈ I and all t ∈ T .

A similar result for the continuation surplus is given through

Lemma 3. Under the first-order approach is the explicit representation of the
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continuation surplus S(θt|ht−1) is given through

S(θt|ht−1) =
T−t∑
τ=0

δτ
∑

θt+τ∈Θt+τ (θt)

t+τ−1∏
s=t

f(θs+1|θs) ·∫
Rτ+1
+

s(θt+τ , qt+τ ) dξθt+τ (qt+τ , . . . , qt|qt−1).

for all i ∈ I, all t ∈ T and all histories ht−1 ∈ H t−1.

Now, with Lemmata 2 and 3 it is straightforward to simplify principal’s ob-

jective (7) by inserting U(θt = θi|ht−1) and S(θt|ht−1) for t = 1 into principal’s

maximization problem.

Then, it is possible to further simplify Lemma 1. Using
∑

θs∈Θs(θs−1) f(θs|θs−1) =

1, and
∫∞

0
dξθs(qs|qs−1) = 1 for all s ∈ T , one obtains iteratively

T−1∑
τ=0

δτ
∑

θτ+1∈Θτ+1

τ∏
s=0

f(θs+1|θs)
∫
Rτ+1
+

v(θτ+1, qτ+1)dξθτ+1(qτ+1)

=
T−1∑
τ=0

δτ
∑

θτ+1∈Θτ+1

τ∏
s=0

f(θs+1|θs)

 ∑
θτ+2∈Θτ+2(θτ+1)

f(θτ+2|θτ+1)

∫
Rτ+1
+

v(θτ+1, qτ+1)dξθτ+1(qτ+1)

=
T−1∑
τ=0

δτ
∑

θτ+2∈Θτ+2

τ+1∏
s=0

f(θs+1|θs)
∫
Rτ+1
+

v(θτ+1, qτ+1)

(∫
R+

dξθτ+2(qτ+2|qτ+1)

)
dξθτ+1(qτ+1)

=
T−1∑
τ=0

δτ
∑

θτ+2∈Θτ+2

τ+1∏
s=0

f(θs+1|θs)
∫
Rτ+2
+

v(θτ+1, qτ+1)dξθτ+2(qτ+2)

= . . .

=
∑
θ∈ΘT

T−1∏
s=0

f(θs+1|θs)
∫
RT+

T−1∑
τ=0

δτv(θτ+1, qτ+1)dξθ(q).

Let V (θ, q) :=
∑T−1

τ=0 δ
τv(θτ+1, qτ+1). V captures the virtual surplus over the

whole time horizon T depending on reported types θ and occurred realizations

of quantities q.

Similar to the static situation in Strausz (2006), the principal gets the maximal

profit if she maximizes V with respect to q for every given θ ∈ ΘT . Hence, for

any q̂ ∈ arg maxq∈RT+ V (θ, q), a contract with implementation function ξ̂θ(q) that
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is equal to 1 if q > q̂ maximizes principal’s objective, i.e.

∑
θ∈ΘT

T−1∏
s=0

f(θs+1|θs)
∫
RT+
V (θ, q)dξθ(q)

6
∑
θ∈ΘT

T−1∏
s=0

f(θs+1|θs)
∫
RT+
V (θ, q)dξ̂θ(q)

=
∑
θ∈ΘT

T−1∏
s=0

f(θs+1|θs)V (θ, q̂).

Hence, stochastic contracts are at most as profitable for the principal as deter-

ministic contracts. This result is summarized in

Proposition 1. Consider a dynamic setting with T < ∞ periods in which the

first-order approach holds. Then, deterministic contracts are always superior

than stochastic contracts.

The idea of the proof is as follows. Since the principal has full commitment to

her initially offered contract, she cannot react to history ht−1 ∈ H t−1 in any later

period t > 2. Therefore, the principal maximizes her expected discounted sum

of virtual surpluses V (θ, q) with respect to q ∈ RT
+. Hence, she always prefers to

choose such quantities that maximize the expectation of V (θ, q) like q̂ ∈ RT
+. If

there are multiple maximizers, she could randomize between them, but still, the

deterministic quantity q̂ would provide at least the same surplus to the principal.

4 Conclusion

This paper shows that stochastic contracts do not yield higher profits to the

principal in dynamic contracting, if one assumes full-commitment of the principal

and that the first-order approach is valid. Therefore, in this class of contracts, it

is sufficient to restrict to deterministic contracts.

The first step in solving this is to transform the principal’s objective (5) in

terms of the virtual surplus function v, shown in Lemma 1. The crucial step

in the proof is the possibility of creation of the function V , which captures the

discounted sum of virtual surpluses over the whole time horizon. Once one has
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obtained this objective function, one can use the same argument as in Strausz

(2006). The difficulty is rather in achieving the function V . The fact that the

first-order approach is valid is essential in this case. Since the IC-constraints

always only bind in one direction, namely to the lower neighbouring type, and

the IR-constraints only bind for the lowest types, one obtains iteratively that

dynamic virtual surplus function.

Consequently, it is not possible to obtain such a function V in general, when

the first-order approach fails, since the set of binding constraints could depend

on the quantity realizations of previous periods and therefore, it is impossible to

extend the proof to such situations.

5 Appendix

Proof of Lemma 2. Let t ∈ T , and ht−1 ∈ H t−1 be an arbitrary history-path.

Under the first-order approach, the IR-constraint is always binding for θN , i.e.

U(θt = θN |ht−1) = 0.

Moreover, the IC-constraints are downward binding, i.e.

U(θt = θi|ht−1) = U(θt = θi+1|ht−1) +

∫ ∞
0

∆u(θt = θi+1, qt)dξ(θt−1,θt=θi+1)(qt|qt−1)

+δ
N∑
k=0

(αik − α(i+1)k)

∫ ∞
0

U(θt+1 = θk|ht−1, θt = θi+1, qt)dξ(θt−1,θt=θi+1)(qt|qt−1),

for all i ∈ I\{N}. Plugging in recursively all binding IC-constraints for all

i < j < N , and the binding IR-constraint for θN , one obtains

U(θt = θi|ht−1) =
N∑

j=i+1

∫ ∞
0

∆u(θt = θj, qt)dξ(θt−1,θt=θj)(qt|qt−1)

+
N∑

j=i+1

δ
N∑
k=0

(α(j−1)k − αjk)
∫ ∞

0

U(θt+1 = θk|ht−1, θt = θj, qt)dξ(θt−1,θt=θj)(qt|qt−1),

for all t ∈ T , and all histories ht−1 ∈ H t−1, whereby U(θT+1|hT ) := 0 for all

histories hT ∈ HT . Now, I show the explicit representation of U(θt = θi|ht−1)

13



by means of backward induction. The basis for t = T is given through the last

equality. For the inductive step for t+ 1 to t, one has

U(θt = θi|ht−1) =
N∑

j=i+1

∫ ∞
0

∆u(θt = θj, qt)dξ(θt−1,θt=θj)(qt|qt−1)

+
N∑

j=i+1

δ

N∑
k=0

(α(j−1)k − αjk)
∫ ∞

0

N∑
l=k+1

T−(t+1)∑
τ=0

δτ
∑

θt+τ+1∈Θt+τ+1(θt−1,θj ,θl)

t+τ∏
s=t+1

∆F (θs+1|θs) ·∫
Rτ+1
+

∆u(θt+τ+1, qt+τ+1) dξθt+τ+1(qt+τ+1, . . . , qt+1|qt)dξ(θt−1,θt=θj)(qt|qt−1)

=
N∑

j=i+1

∫ ∞
0

∆u(θt = θj, qt)dξ(θt−1,θt=θj)(qt|qt−1)

+
N∑

j=i+1

T−t−1∑
τ=0

δτ+1

N∑
l=0

l−1∑
k=0

(α(j−1)k − αjk)
∑

θt+τ+1∈Θt+τ+1(θt−1,θj ,θl)

t+τ∏
s=t+1

∆F (θs+1|θs) ·∫ ∞
0

∫
Rτ+1
+

∆u(θt+τ+1, qt+τ+1) dξθt+τ+1(qt+τ+1, . . . , qt+1|qt)dξ(θt−1,θt=θj)(qt|qt−1)

=
N∑

j=i+1

∫ ∞
0

∆u(θt = θj, qt)dξ(θt−1,θt=θj)(qt|qt−1)

+
N∑

j=i+1

T−t∑
τ=1

δτ
N∑
l=0

∆F (θl|θj)
∑

θt+τ∈Θt+τ (θt−1,θj ,θl)

t+τ−1∏
s=t+1

∆F (θs+1|θs) ·∫ ∞
0

∫
Rτ+

∆u(θt+τ , qt+τ ) dξθt+τ (qt+τ , . . . , qt+1|qt)dξ(θt−1,θt=θj)(qt|qt−1)

=
N∑

j=i+1

∫ ∞
0

∆u(θt = θj, qt)dξ(θt−1,θt=θj)(qt|qt−1)

+
N∑

j=i+1

T−t∑
τ=1

δτ
∑

θt+τ∈Θt+τ (θt−1,θj)

∆F (θt+1|θt)
t+τ−1∏
s=t+1

∆F (θs+1|θs) ·∫ ∞
0

∫
Rτ+

∆u(θt+τ , qt+τ ) dξθt+τ (qt+τ , . . . , qt+1|qt)dξ(θt−1,θt=θj)(qt|qt−1)

=
N∑

j=i+1

T−t∑
τ=0

δτ
∑

θt+τ∈Θt+τ (θt−1,θj)

t+τ−1∏
s=t

∆F (θs+1|θs) ·∫
Rτ+1
+

∆u(θt+τ , qt+τ ) dξθt+τ (qt+τ , . . . , qt|qt−1),

14



for all i ∈ I. Here, I use

dξθt+τ (qt+τ , . . . , qt|qt−1) = dξθt+τ (qt+τ , . . . , qt+1|qt)dξθt+1(qt+1, qt|qt−1)

for the probability measures of the conditional implementation functions.

�

Proof of Lemma 3. Again, I will show this statement with backward induction.

The basis for t = T follows directly from equation (6). The Lemma is therefore

shown with

S(θt|ht−1) =

∫ ∞
0

s(θt, qt)dξθt(qt|qt−1)

+δ
∑

θt+1∈Θ

f(θt+1|θt)
T−(t+1)∑
τ=0

δτ
∑

θt+τ+1∈Θt+τ+1(θt+1)

t+τ∏
s=t+1

f(θs+1|θs) ·∫ ∞
0

∫
Rτ+1
+

s(θt+τ+1, qt+τ+1) dξθt+τ+1(qt+τ+1, . . . , qt+1|qt)dξθt(qt|qt−1)

=

∫ ∞
0

s(θt, qt)dξθt(qt|qt−1)

+
T−t−1∑
τ=0

δτ+1
∑

θt+τ+1∈Θt+τ+1(θt)

t+τ∏
s=t

f(θs+1|θs) ·∫
Rτ+2
+

s(θt+τ+1, qt+τ+1) dξθt+τ+1(qt+τ+1, . . . , qt|qt−1)

=

∫ ∞
0

s(θt, qt)dξθt(qt|qt−1)

+
T−t∑
τ=1

δτ
∑

θt+τ∈Θt+τ (θt)

t+τ−1∏
s=t

f(θs+1|θs) ·∫
Rτ+1
+

s(θt+τ , qt+τ ) dξθt+τ (qt+τ , . . . , qt|qt−1).

�
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Proof of Lemma 1. Now it is easy to deduce Lemma 1 from Lemmata 2 and 3:

N∑
i=0

µi(S(θ1 = θi)− U(θ1 = θi))

=
N∑
i=0

µi

T−1∑
τ=0

δτ
∑

θτ+1∈Θτ+1(θi)

τ∏
s=1

f(θs+1|θs)
∫
Rτ+1
+

s(θτ+1, qτ+1) dξθτ+1(qτ+1)

−
N∑

j=i+1

T−1∑
τ=0

δτ
∑

θτ+1∈Θτ+1(θj)

τ∏
s=1

∆F (θs+1|θs)
∫
Rτ+1
+

∆u(θτ+1, qτ+1) dξθτ+1(qτ+1)


=

T−1∑
τ=0

δτ
N∑
i=0

µi

 ∑
θτ+1∈Θτ+1(θi)

τ∏
s=1

f(θs+1|θs)
∫
Rτ+1
+

s(θτ+1, qτ+1) dξθτ+1(qτ+1)

− 1− F (θi)

µi

∑
θτ+1∈Θτ+1(θi)

τ∏
s=1

∆F (θs+1|θs)
∫
Rτ+1
+

∆u(θτ+1, qτ+1) dξθτ+1(qτ+1)


=

T−1∑
τ=0

δτ
∑
θ1∈Θ

f(θ1)
∑

θτ+1∈Θτ+1(θ1)

τ∏
s=1

f(θs+1|θs) ·

∫
Rτ+1
+

(
s(θτ+1, qτ+1)− 1− F (θ1)

f(θ1)

τ∏
s=1

∆F (θs+1|θs)
f(θs+1|θs)

∆u(θτ+1, qτ+1)

)
dξθτ+1(qτ+1)

=
T−1∑
τ=0

δτ
∑

θτ+1∈Θτ+1

τ∏
s=0

f(θs+1|θs)
∫
Rτ+1
+

v(θτ+1, qτ+1)dξθτ+1(qτ+1).

�
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